light intensity
Recently Published Documents





2022 ◽  
Vol 295 ◽  
pp. 110879
Danyan Chen ◽  
Junhua Zhang ◽  
Bo Zhang ◽  
Zhisheng Wang ◽  
Libo Xing ◽  

2022 ◽  
Vol 369 ◽  
pp. 130913
Dorthe H. Larsen ◽  
Hua Li ◽  
Arjen C. van de Peppel ◽  
Celine C.S. Nicole ◽  
Leo F.M. Marcelis ◽  

2022 ◽  
Vol 194 ◽  
pp. 113027
Karel Vives Hernández ◽  
Jordi Moreno-Romero ◽  
Martha Hernández de la Torre ◽  
Claudia Pérez Manríquez ◽  
Darcy Ríos Leal ◽  

Daniel Patricko Hutabarat ◽  
Rudy Susanto ◽  
Bryan Prasetya ◽  
Barry Linando ◽  
Senanayake Mudiyanselage Namal Senanayake

<span>The purpose of this research is to create a smart system based on internet of things (IoT) application for a plant aquarium. This smart system helps users to maintain the environment's parameters of the plant aquarium. In this study, the parameters to be controlled by the system are light intensity and temperature. The hardware used to develop this system is the ESP32 as the microcontroller, BH1750FVI as the light sensor, high power led (HPL) light-emitting diodes (LED) lamp as the light source, DS18B20 as temperature sensor, the heater, and the 220 VAC fan that is used to raise and lower the temperature. In this study also developed an application that is used by the user to provide input to the system. The developed application is then installed on the user's smartphone and used to connect the user to the system via the internet. The ease of adding and removing devices used on the system is a capability that is also being developed in this smart system. The developed system can produce light intensity with accuracy rate of 96% and always manage to keep the temperature within the predetermined range.</span>

Umang Deogade

Abstract: The most significant system for monitoring solar systems is the solar parameters monitoring system. Solar energy is a renewable energy source produced by solar panels. Solar energy is a renewable energy source produced by solar panels. Voltage, light intensity, and temperature are the parameters that the system measures. An Arduino Uno microcontroller board is used in the suggested monitoring system. Solar panel, LDR Sensor, LM 35, Arduino microcontroller, and resistors are used in the system. Light. LDR sensor is used to detect light intensity, L35 is used to measure temperature, and a voltage divider circuit is used to monitor voltage in this system. Keywords: Solar Panel, Monitoring, Renewable Energy, Solar Panel, Arduino Uno.

Mansi Kadam

Abstract: In today’s era of illuminating devices, there are a wide variety of devices available in aesthetics but the none with variable intensity of light. Using the basic principle of polarization of light using a Polaroid filter or polarizer, the designing of a light intensity control was done. The polarizing angle of the filter decides the intensity of the light that would pass through the filters. According to the principle of propagation of light, the electric and magnetic vibrations of a light wave occur perpendicularly to each other. A light wave that is vibrating in more than one plane is known as unpolarized light. The light emitted by the sun, by a lamp or a tube light are all unpolarized light sources. The other kind of wave is a polarized wave. A Plane polarized light vibrates on only one plane. The process of transforming unpolarized light into the polarized light is known as polarization. Using the same principle and with the use of a LDR (light dependent resister) as a sensor to sense the intensity of the surrounding light and then rotate the polaroid filter sheets accordingly using a stepper motor for the required change in intensity. The sensing and sending of feedback and subsequent rotation of the Polaroid filter sheets would be automated by ATMEGA32 microcontroller and L293D. Keywords: Polaroids, LDR, Light Variation, ATMEGA32, L293D

Plant Methods ◽  
2022 ◽  
Vol 18 (1) ◽  
Cuihong Xu ◽  
Lingkun Zhong ◽  
Zeming Huang ◽  
Chenying Li ◽  
Jiazhang Lian ◽  

Abstract Background Ralstonia solanacearum, one of the most devastating bacterial plant pathogens, is the causal agent of bacterial wilt. Recently, several studies on resistance to bacterial wilt have been conducted using the Arabidopsis-R. solanacearum system. However, the progress of R. solanacearum infection in Arabidopsis is still unclear. Results We generated a bioluminescent R. solanacearum by expressing plasmid-based luxCDABE. Expression of luxCDABE did not alter the bacterial growth and pathogenicity. The light intensity of bioluminescent R. solanacearum was linearly related to bacterial concentrations from 104 to 108 CFU·mL−1. After root inoculation with bioluminescent R. solanacearum strain, light signals in tomato and Arabidopsis were found to be transported from roots to stems via the vasculature. Quantification of light intensity from the bioluminescent strain accurately reported the difference in disease resistance between Arabidopsis wild type and resistant mutants. Conclusions Bioluminescent R. solanacearum strain spatially and quantitatively measured bacterial growth in tomato and Arabidopsis, and offered a tool for the high-throughput study of R. solanacearum-Arabidopsis interaction in the future.

Sign in / Sign up

Export Citation Format

Share Document