scholarly journals Demonstration of artificial visual percepts generated through thalamic microstimulation

2007 ◽  
Vol 104 (18) ◽  
pp. 7670-7675 ◽  
Author(s):  
John S. Pezaris ◽  
R. Clay Reid

Electrical stimulation of the visual system might serve as the foundation for a prosthetic device for the blind. We examined whether microstimulation of the dorsal lateral geniculate nucleus of the thalamus can generate localized visual percepts in alert monkeys. To assess electrically generated percepts, an eye-movement task was used with targets presented on a computer screen (optically) or through microstimulation of the lateral geniculate nucleus (electrically). Saccades (fast, direct eye movements) made to electrical targets were comparable to saccades made to optical targets. Gaze locations for electrical targets were well predicted by measured visual response maps of cells at the electrode tips. With two electrodes, two distinct targets could be independently created. A sequential saccade task verified that electrical targets were processed not in motor coordinates, but in visual spatial coordinates. Microstimulation produced predictable visual percepts, showing that this technique may be useful for a visual prosthesis.

2005 ◽  
Vol 93 (6) ◽  
pp. 3224-3247 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

Thalamic relay cells fire action potentials in two modes: burst and tonic. Previous studies in cats have shown that these two modes are associated with significant differences in the visual information carried by spikes in the dorsal lateral geniculate nucleus (dLGN). Here we describe the visual response properties of burst and tonic firing in the mouse dLGN. Extracellular recordings of activity in single geniculate cells were performed under halothane and nitrous oxide anesthesia in vivo. After confirming that the criteria used to isolate burst spikes from these recordings identify firing events with properties described for burst firing in other species and preparations, we show that burst firing in the mouse dLGN occurs during visual stimulation. We then compare burst and tonic firing across a wide range of visual response characteristics. While the two firing modes do not differ with respect to spatial summation or spatial frequency tuning, they show significant differences in the temporal domain. Burst spikes are phase advanced relative to their tonic counterparts. Burst firing is also more rectified, possesses sharper temporal frequency tuning, and prefers lower temporal frequencies than tonic firing. In addition, contrast-response curves are more step-like for burst responses. Finally, we present analyses that describe the stimulus detection abilities and spike timing reliability of burst and tonic firing.


2015 ◽  
Vol 112 (42) ◽  
pp. E5734-E5743 ◽  
Author(s):  
Riccardo Storchi ◽  
Nina Milosavljevic ◽  
Cyril G. Eleftheriou ◽  
Franck P. Martial ◽  
Patrycja Orlowska-Feuer ◽  
...  

Twice a day, at dawn and dusk, we experience gradual but very high amplitude changes in background light intensity (irradiance). Although we perceive the associated change in environmental brightness, the representation of such very slow alterations in irradiance by the early visual system has been little studied. Here, we addressed this deficit by recording electrophysiological activity in the mouse dorsal lateral geniculate nucleus under exposure to a simulated dawn. As irradiance increased we found a widespread enhancement in baseline firing that extended to units with ON as well as OFF responses to fast luminance increments. This change in baseline firing was equally apparent when the slow irradiance ramp appeared alone or when a variety of higher-frequency artificial or natural visual stimuli were superimposed upon it. Using a combination of conventional knockout, chemogenetic, and receptor-silent substitution manipulations, we continued to show that, over higher irradiances, this increase in firing originates with inner-retinal melanopsin photoreception. At the single-unit level, irradiance-dependent increases in baseline firing were strongly correlated with improvements in the amplitude of responses to higher-frequency visual stimuli. This in turn results in an up to threefold increase in single-trial reliability of fast visual responses. In this way, our data indicate that melanopsin drives a generalized increase in dorsal lateral geniculate nucleus excitability as dawn progresses that both conveys information about changing background light intensity and increases the signal:noise for fast visual responses.


2003 ◽  
Vol 90 (6) ◽  
pp. 3594-3607 ◽  
Author(s):  
Matthew S. Grubb ◽  
Ian D. Thompson

We present a quantitative analysis of the visual response properties of single neurons in the dorsal lateral geniculate nucleus (dLGN) of wild-type C57Bl/6J mice. Extracellular recordings were made from single dLGN cells in mice under halothane and nitrous oxide anesthesia. After mapping the receptive fields (RFs) of these cells using reverse correlation of responses to flashed square stimuli, we used sinusoidal gratings to describe their linearity of spatial summation, spatial frequency tuning, temporal frequency tuning, and contrast response characteristics. All cells in our sample had RFs dominated by a single, roughly circular “center” mechanism that responded to either increases (on-center) or decreases (off-center) in stimulus luminance, and almost all cells passed a modified null test for linearity of spatial summation. A difference of Gaussians model was used to relate spatial frequency tuning to the spatial properties of cells' RFs, revealing that mouse dLGN cells have large RFs (center diameter approximately 11°) and correspondingly poor spatial resolution (approximately 0.2c/°). Temporally, most cells in the mouse dLGN respond best to stimuli of approximately 4 Hz. We looked for evidence of parallel processing in the mouse dLGN and found it only in a functional difference between on- and off-center cells: on-center cells were more sensitive to stimulus contrast than their off-center neighbors.


2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


Sign in / Sign up

Export Citation Format

Share Document