The synthesis of α-amylase by rough and in vitro reconstituted rough endoplasmic reticulum derived from rat parotid gland

1976 ◽  
Vol 2 (6) ◽  
pp. 455-463
Author(s):  
Bernard Cwikel ◽  
Rachel Avner ◽  
Henryk H. Czosnek ◽  
Abraham A. Hochberg ◽  
Nathan de Groot
1982 ◽  
Vol 208 (3) ◽  
pp. 789-794 ◽  
Author(s):  
P Kanagasuntheram ◽  
T S Teo

Rat parotid gland homogenates were fractionated into mitochondrial, heavy microsomal and light microsomal fractions by differential centrifugation. ATP-dependent 45Ca2+ uptake by the subcellular fractions paralleled the distribution of NADPH-cytochrome c reductase, an enzyme associated with the endoplasmic reticulum. The highest rate of Ca2+ uptake was found in the heavy microsomal fraction. Ca2+ uptake by this fraction was dependent on the presence of ATP and was sustained at a linear rate by 5 mM-oxalate. Inhibitors of mitochondrial Ca2+ transport had no effect on the rate of Ca2+ uptake. Na+ and K+ stimulated Ca2+ uptake. At optimal concentrations. Na+ stimulated Ca2+ uptake by 120% and K+ stimulated Ca2+ uptake by 260%. Decreasing the pH from 7.4 to 6.8 had little effect on Ca2+ uptake. The Km for Ca2+ uptake was 3.7 microM free Ca2+ and 0.19 mM-ATP. Vanadate inhibited Ca2+ uptake; 60 microM-vanadate inhibited the rate of Ca2+ accumulation by 50%. It is concluded that the ATP-dependent Ca2+ transport system is located on the endoplasmic reticulum and may play a role in maintaining intracellular levels of free Ca2+ within a narrow range of concentration.


1993 ◽  
Vol 264 (3) ◽  
pp. G541-G552
Author(s):  
Y. Hiramatsu ◽  
R. Kawai ◽  
R. C. Reba ◽  
T. R. Simon ◽  
B. J. Baum ◽  
...  

(RR)- and (SS)-quinuclidinyl iodobenzilate enantiomers [(RR)- and (SS)-IQNB, active and inert, respectively] have been synthesized for quantitative evaluation of muscarinic acetylcholine receptor (mAChR) binding. Pharmacokinetic approaches have not been used previously to assess in vivo IQNB binding in nonexcitable tissues. We have applied this method to examine mAChRs in rat parotid gland in comparison to those in brain and heart. Short-term infusion studies in vivo showed that the "instantaneous" reversible binding of (RR)- and (SS)-IQNB was high in the parotid (greater nonspecific binding potential), intermediate in the heart, and lowest in cortex and cerebellum. Long-term bolus injection experiments showed that the parotid gland mAChRs possessed a binding potential for receptor specific sites (380), which was intermediate between that of parietal cortex (930) and cerebellum (10) and greater than that of heart (165). In vitro binding to plasma membranes was generally consistent with the in vivo findings. In aggregate, these studies show that mAChRs can be evaluated in vivo in a nonexcitable tissue with the use of stereospecific ligands and a pharmacokinetic approach. The data suggest that IQNB, a mAChR antagonist, can identify characteristics of specific binding sites, which may reflect tissue differences.


1978 ◽  
Vol 176 (1) ◽  
pp. 23-29 ◽  
Author(s):  
P Kanagasuntheram ◽  
S C Lim

1. Protein synthesis in the rat parotid gland in vitro was studied by measuring the incorporation of [3H]phenylalanine into trichloroacetic acid-insoluble proteins. In the unstimulated gland, the rate of incorporation was dependent on the phenylalanine concentration in the medium and proceeded linearly for up to 3h. 2. Adrenaline, carbamoylcholine, phenylephrine and ionophore A23187 inhibited the incorporation of [3H]phenylalanine into acid-insoluble protein; isoprenaline, dibutyryl cyclic AMP and 8-bromo-cyclic GMP were inactive. 3. Inhibition by adrenaline and carbamoylcholine but not by ionophore A23187 required extracellular Ca2+. 4. Both adrenaline and carbamoylcholine increased the magnitude of the acid-soluble [3H]phenylalanine pool at 10 micrometer extracellular phenylalanine, but had no effect if the phenylalanine concentration was increased to 200 micrometer. 5. There was no correlation between cellular ATP content and the observed inhibition of protein synthesis. 6. Our results suggest that both alpha-adrenergic and cholinergic receptors may play a role in the regulation of protein synthesis in the rat parotid gland, and that their effects are mediated by a rise in intracellular free Ca2+.


Sign in / Sign up

Export Citation Format

Share Document