fluorescent substrate
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yue Zhu ◽  
Huimin Ju ◽  
Hongyan Lu ◽  
Wei Tang ◽  
Junying Lu ◽  
...  

Abstract Background Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar dysplasia and pulmonary microvascular remodeling. In the present study, we have investigated the functional roles of ubiquitin proteasome pathway (UPP) in BPD, and its relationship with endoplasmic reticulum stress (ERS) mediated type II alveolar epithelial cell (AECII) apoptosis. Methods A hyperoxia-induced BPD rat model was constructed and the pathologic changes of lung tissues were evaluated by hematoxylin–eosin staining. Cell apoptosis and protein expression were determined by TUNEL assay and Western blotting, respectively. Further reagent kit with specific fluorescent substrate was utilized to measure the activity of 20 s proteasome. Meanwhile, AECII were cultured in vitro and exposed to hyperoxia. AECII apoptosis were measured by flow cytometry. In contrast, MG132 treatment was induced to explore UPP during hyperoxia exposure on AECII apoptosis and ERS sensors expression. Results A significant increase in apoptosis and total ubiquitinated proteins expression were observed in BPD rats and AECII culture, and the change of UPP was associated with ERS. In order to confirm the role of UPP in AECII apoptosis of BPD, AECII cells were treated by MG132 with the concentration of 10 μmol/L under hyperoxia exposure. We found that the proteins expression of glucose-regulated protein 78 (GRP-78), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP), as well as AECII apoptosis were increased following MG132 treatment. Furthermore, the relatively up-regulated in the levels of total ubiquitinated proteins expression and 20 s proteasome activity were correlated with increased ERS sensors expression. Conclusions Our findings indicate that UPP may participate in the ERS-induced AECII apoptosis under hyperoxia condition.


2021 ◽  
Author(s):  
Moshe Giladi ◽  
Michal Lisnyansky Bar-El ◽  
Pavla Vankova ◽  
Alisa Ferofontov ◽  
Emelia Melvin ◽  
...  

Isoprenoids are the largest group of natural products, found in all living organisms and play an essential role in numerous cellular processes. These compounds are synthesized by prenyltransferases, catalyzing the condensation reaction between an allylic diphosphate primer and a variable number of isopentenyl diphosphate (C5) units. This superfamily of enzymes can be subdivided into trans- or cis-prenyltransferases according to the stereoisomerism of the product. The cis branch can be further classified according to product length. While the active site volume was suggested to determine the final length in enzymes synthesizing short- and medium-chain products (up to C60), long-chain enzymes (up to C120) and rubber synthases (>C10,000) fail to conform to this paradigm. Here, to resolve the structural basis for long-chain isoprenoid synthesis, we focused on the human cis-prenyltransferase complex (hcis-PT). This enzyme, peripheral to the endoplasmic reticulum membrane, produces the precursor for dolichol phosphate, a membrane residing glycosyl carrier. In line with its crucial role in the cellular protein glycosylation machinery, disease-causing mutations in hcis-PT were shown to result in a wide spectrum of clinical phenotypes. The crystallographic structures of hcis-PT in four different substrate/product-bound conformations revealed an outlet enabling product elongation into the bulk solvent. Moreover, hydrogen-deuterium exchange mass spectrometry analysis in solution showed that the hydrophobic active site core is flanked by dynamic regions consistent with separate inlet and outlet orifices. Finally, using a fluorescent substrate analog and a fluorescently-labeled lipid nanodiscs, we show that product elongation and membrane association are closely correlated. Together, our results support directional product synthesis in long-chain enzymes and rubber synthases, with a distinct substrate inlet and product outlet, allowing direct membrane insertion of the elongating isoprenoid during catalysis. This mechanism uncouples active site volume from product length and circumvents the need to expulse hydrophobic product into a polar environment prior to membrane insertion.


2021 ◽  
Vol 100 (4) ◽  
pp. 12-19
Author(s):  
Kh.М. Emirova ◽  
◽  
O.M. Orlova ◽  
E.M. Chichuga ◽  
А.L. Мuzurov ◽  
...  

Atypical hemolytic uremic syndrome (aHUS) is an orphan disease caused by hyperactivation of the alternative complement pathway. Objective of the study: to assess the state of the «ADAMTS13 – von Willebrand factor (vWF) – platelets» system in children with aHUS. Materials and methods of research: [by the FRET method (fluorescence resonance energy transfer) for the FRETSVWF73 (Peptide Institude, Inc., Japan)] hydrolysis of the fluorescent substrate and ADAMTS13 antigen [by ELISA using TECHNOZYM® ADAMTS13 5450551 ELISA (Technoclone GmbH, Austria)], vWF activity [for platelet agglutination (aggregation) in the presence of ristomycin (NPO Renam reagent kit for the ALAT-230LA-2 aggregometer, Russia)] and vWF antigen [by ELISA using the TECHNOZYM® vWF kit: Ag 5450201 ELISA (Technoclone GmbH , Austria)]. Results: there was a decrease in the activity and concentration of ADAMTS13 in 63% and 62% of patients, respectively. A decrease in vWF activity was noted in 44% of cases, an increase in its concentration – in 54% of children. Thrombocytopenia was diagnosed in 99% of children. Conclusion: the imbalance in the «ADAMTS13 – vWF – platelets» system supports the process of thrombus formation with the development of organ ischemia in aHUS under conditions of endothelial dysfunction. Reduced ADAMTS13 activity predicts the severity of the disease.


2021 ◽  
Author(s):  
Yue Zhu ◽  
Huimin Ju ◽  
Hongyan Lu ◽  
Wei Tang ◽  
Junying Lu ◽  
...  

Abstract Backgroud: Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar dysplasia and pulmonary microvascular remodeling. In the present study, we have investigated the functional roles of ubiquitin proteasome pathway (UPP) in BPD, and its relationship with endoplasmic reticulum stress (ER stress, ERS) mediated AECII apoptosis. Methods: A hyperoxia-induced BPD rat model was constructed and the pathologic changes of lung tissues were evaluated by Hematoxylin-Eosin staining. Cell apoptosis and protein expression were determined by TUNEL assay and Western blotting, respectively. Further reagent kit with specific fluorescent substrate was utilized to measure the activity of 20s proteasome. Meanwhile, AECII were cultured in vitro and exposed to hyperoxia. AECII apoptosis were measured by flow cytometry. In contrast, MG132 treatment was induced to explore ubiquitin proteasome pathway during hyperoxia exposure on AECII apoptosis and ERS sensors expression.Results: A significant increase in apoptosis and total ubiquitinated proteins expression were observed in BPD rats and AECII culture, and the change of UPP was associated with ERS. In order to confirm the role of UPP in AECII apoptosis of BPD, AECII cells were treated by MG132 with the concentration of 10 μmol/L under hyperoxia exposure. We found that the proteins expression of GRP-78, PERK, ATF4, ATF6 and CHOP, as well as AECII apoptosis were increased following MG132 treatment. Furthermore, the relatively up-regulated in the levels of total ubiquitinated proteins expression and 20S proteasome activity were correlated with increased ERS sensors expression. Conclusions: Our findings indicate that UPP may participate in the ERS-induced AECII apoptosis under hyperoxia condition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hubert J. Sijben ◽  
Wieke M. van Oostveen ◽  
Peter B. R. Hartog ◽  
Laura Stucchi ◽  
Andrea Rossignoli ◽  
...  

AbstractThe human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET—norepinephrine (NE), dopamine (DA) and epinephrine (EP)—were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z′ = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shreyas Bhat ◽  
Marco Niello ◽  
Klaus Schicker ◽  
Christian Pifl ◽  
Harald H Sitte ◽  
...  

The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, e.g. membrane voltage and/or the transmembrane K+ gradient. We address this by recording uptake of endogenous substrates or the fluorescent substrate APP+ ((4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET or SERT. We show that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.


2021 ◽  
Author(s):  
Heather J. Young ◽  
Matthew Chan ◽  
Balaji Selvam ◽  
Steven K. Szymanski ◽  
Diwakar Shukla ◽  
...  

AbstractThe serotonin transporter, SERT, catalyzes serotonin reuptake at the synapse to terminate neurotransmission via an alternating access mechanism, and SERT inhibitors are the most widely prescribed antidepressants. Here, deep mutagenesis is used to determine the effects of nearly all amino acid substitutions on human SERT surface expression and transport of the fluorescent substrate analogue APP+, identifying many mutations that enhance APP+ import. Comprehensive simulations of the entire ion-coupled import process reveal that while binding of the native substrate, serotonin, reduces free energy barriers between conformational states to promote SERT dynamics, the conformational free energy landscape in the presence of APP+ instead resembles Na+ bound-SERT, with a higher free energy barrier for transitioning to an inward-facing state. The deep mutational scan for SERT-catalyzed import of APP+ finds mutations that promote the necessary conformational changes that would otherwise be facilitated by the native substrate. Indeed, hundreds of gain-of-function mutations for APP+ import are found along the permeation pathway, most notably mutations that favor opening of a solvent-exposed intracellular vestibule. The mutagenesis data support the simulated mechanism in which the neurotransmitter and a symported sodium share a common cytosolic exit pathway to achieve coupling. Furthermore, the mutational landscape for SERT surface trafficking, which likely filters out misfolded sequences, reveals that residues along the permeation pathway are mutationally tolerant, providing plausible evolutionary pathways for changes in transporter properties while maintaining folded structure.


2021 ◽  
Author(s):  
Jelena Dragojević ◽  
Nikola Maraković ◽  
Marta Popović ◽  
Tvrtko Smital

Abstract OATP2B1 belongs to a highly conserved organic anion transporting polypeptide (OATP) family of transporters, involved in the cellular uptake of both endogenous and exogenous compounds. The main substrates of human OATP2B1 include steroid conjugates, bile salts and thyroid hormones, as well as several pharmaceuticals. Human OATP2B1 has orthologous genes in other vertebrate species, including zebrafish (Danio rerio), a widely used model organism in biomedical and environmental research. Our previous studies showed that zebrafish Oatp2b1 was phylogenetically closest to mammalian OATP2B1/Oatp2b1 and that it shares a similar tissue expression pattern. In this study, we aimed at discovering whether zebrafish Oatp2b1 could be a functional ortholog of human and rodent OATP2B1/Oatp2b1. To test this hypothesis, our primary goal was to obtain the first in vitro and in silico insights related to the structure and potential substrate preferences of zebrafish Oatp2b1. We generated cells transiently and stably transfected with zebrafish Oatp2b1 cloned from zebrafish liver, constructed an Oatp2b1 homology model, developed transport activity assays with model fluorescent substrate Lucifer yellow, and finally utilized this assay to analyze the interaction of zebrafish Oatp2b1 with both physiological and xenobiotic substances. Apart from structure similarities, our data revealed the strongest interaction of zebrafish Oatp2b1 with bile acids, steroid sulfates, thyroid hormones and bilirubin, as well as xenobiotics bromosulfophthalein and sulfasalazine, which indicates its functional orthology with human OATP2B1.


2021 ◽  
Author(s):  
Elizabeth E. Ha ◽  
Gabriella I. Quartuccia ◽  
Ruifeng Ling ◽  
Chenyi Xue ◽  
Antonio Hernandez-Ono ◽  
...  

AbstractMultiple GWAS have identified SNPs in the 8q24 locus near the TRIB1 gene that significantly associate with plasma lipids and coronary artery disease. While subsequent studies have uncovered roles for hepatic and myeloid Trib1 in contributing to either plasma lipids or atherosclerosis, the causal tissue for these GWAS associations remains unclear. The same 8q24 SNPs significantly associate with plasma adiponectin levels in humans as well, suggesting a role for TRIB1 in adipose tissue. Here, we report that adipocyte-specific Trib1 knockout mice (Trib1_ASKO) have increased plasma adiponectin levels and decreased plasma cholesterol and triglycerides. We demonstrate that loss of Trib1 increases adipocyte production and secretion of adiponectin independent of the known TRIB1 function of regulating proteasomal degradation. RNA-seq analysis of adipocytes and livers from Trib1_ASKO mice suggests that alterations in adipocyte function underlie the plasma lipid changes observed in these mice. Secretomics and RNA-seq analysis revealed that Trib1_ASKO mice have increased production of Lpl and decreased production of Angptl4 in adipose tissue, and fluorescent substrate assays confirm an increase in adipose tissue Lpl activity, which likely underlies the observed triglyceride phenotype. In summary, we demonstrate here a novel role for adipocyte Trib1 in regulating plasma adiponectin, total cholesterol, and triglycerides in mice, confirming previous genetic associations observed in humans and providing a novel avenue through which Trib1 regulates plasma lipids and coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document