Hydrodynamic stability of boundary layers with surface mass transfer

1970 ◽  
Vol 22 (1) ◽  
pp. 273-286 ◽  
Author(s):  
F. K. Tsou ◽  
E. M. Sparrow
1987 ◽  
Vol 54 (1) ◽  
pp. 197-202 ◽  
Author(s):  
C. A. J. Fletcher ◽  
R. W. Fleet

The Dorodnitsyn finite element formulation is extended to cover incompressible, two-dimensional turbulent boundary layers with surface mass transfer in the normal direction. The method is shown to give accurate and economical answers with only eleven points spanning the boundary layer. Good agreement is obtained when the computational solutions are compared with the experimental results of McQuaid [13] for skin friction coefficient, displacement and momentum thickness and velocity profiles. Zero and adverse pressure gradient and discontinuous injection cases have been considered.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Sharmina Hussain ◽  
Nepal C. Roy ◽  
Md. Anwar Hossain ◽  
Suvash C. Saha

An investigation has been carried on double diffusive effect on boundary layer flow due to small amplitude oscillation in surface heat and mass flux. Extensive parametric simulations were performed in order to elucidate the effects of some important parameters, that is, Prandtl number, Schmidt number, and Buoyancy ratio parameter on flow field in conjunction with heat and mass transfer. Asymptotic solutions for low and high frequencies are obtained for the conveniently transformed governing coupled equations. Solutions are also obtained for wide ranged value of the frequency parameters. Comparisons between the asymptotic and wide ranged values are made in terms of the amplitudes and phases of the shear stress, surface heat transfer, and surface mass transfer. It has been found that the amplitudes and phase angles obtained from asymptotic solutions are found in good agreement with the finite difference solutions obtained for wide ranged value of the frequency parameter.


AIAA Journal ◽  
1976 ◽  
Vol 14 (5) ◽  
pp. 589-596 ◽  
Author(s):  
G. R. Inger ◽  
T. F. Swean

Sign in / Sign up

Export Citation Format

Share Document