surface mass
Recently Published Documents


TOTAL DOCUMENTS

1419
(FIVE YEARS 443)

H-INDEX

71
(FIVE YEARS 10)

2022 ◽  
Vol 16 (1) ◽  
pp. 143-158
Author(s):  
Timm Schultz ◽  
Ralf Müller ◽  
Dietmar Gross ◽  
Angelika Humbert

Abstract. Simulation approaches to firn densification often rely on the assumption that grain boundary sliding is the leading process driving the first stage of densification. Alley (1987) first developed a process-based material model of firn that describes this process. However, often so-called semi-empirical models are favored over the physical description of grain boundary sliding owing to their simplicity and the uncertainties regarding model parameters. In this study, we assessed the applicability of the grain boundary sliding model of Alley (1987) to firn using a numeric firn densification model and an optimization approach, for which we formulated variants of the constitutive relation of Alley (1987). An efficient model implementation based on an updated Lagrangian numerical scheme enabled us to perform a large number of simulations to test different model parameters and identify the simulation results that best reproduced 159 firn density profiles from Greenland and Antarctica. For most of the investigated locations, the simulated and measured firn density profiles were in good agreement. This result implies that the constitutive relation of Alley (1987) characterizes the first stage of firn densification well when suitable model parameters are used. An analysis of the parameters that result in the best agreement revealed a dependence on the mean surface mass balance. This finding may indicate that the load is insufficiently described, as the lateral components of the stress tensor are usually neglected in one-dimensional models of the firn column.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Agnieszka Brochocka ◽  
Aleksandra Nowak ◽  
Paweł Kozikowski

In this article, we present polymer non-woven fabrics with the addition of carbon sorbents being tested to estimate the breakthrough time and efficient protection against vapors present in smog. For this purpose, three substances were selected, which constitute an inhalation hazard and are smog components: cyclohexane, toluene, and sulfur dioxide. It was demonstrated that an increased quantity of carbon sorbent in polymeric filters significantly prolongs the breakthrough time. However, high sorbent quantities may increase the filter surface mass and air flow resistance. To optimize the protective parameters with functionality, a compromise between the two has to be found. By comparing the breakthrough times for different carbon sorbent quantities, the optimal filter composition was elaborated. The analyzed non-woven fabrics were manufactured by the melt-blown process and filled with ball-milled carbon sorbents supplied directly into the fabric blowing nozzle. Both protective performance and textural properties were analyzed for two commercially available carbon sorbents. Furthermore, it was proven that high values of sorbent-specific surface area translates directly into greater filter performance.


2022 ◽  
Vol 15 (1) ◽  
pp. 69
Author(s):  
Thao Tranová ◽  
Jolanta Pyteraf ◽  
Mateusz Kurek ◽  
Witold Jamróz ◽  
Witold Brniak ◽  
...  

Additive manufacturing technologies are considered as a potential way to support individualized pharmacotherapy due to the possibility of the production of small batches of customized tablets characterized by complex structures. We designed five different shapes and analyzed the effect of the surface/mass ratio, the influence of excipients, and storage conditions on the disintegration time of tablets printed using the fused deposition modeling method. As model pharmaceutical active ingredients (APIs), we used paracetamol and domperidone, characterized by different thermal properties, classified into the various Biopharmaceutical Classification System groups. We found that the high surface/mass ratio of the designed tablet shapes together with the addition of mannitol and controlled humidity storage conditions turned out to be crucial for fast tablet’s disintegration. As a result, mean disintegration time was reduced from 5 min 46 s to 2 min 22 s, and from 11 min 43 s to 2 min 25 s for paracetamol- and domperidone-loaded tablets, respectively, fulfilling the European Pharmacopeia requirement for orodispersible tablets (ODTs). The tablet’s immediate release characteristics were confirmed during the dissolution study: over 80% of APIs were released from printlets within 15 min. Thus, this study proved the possibility of using fused deposition modeling for the preparation of ODTs.


2022 ◽  
Vol 16 (1) ◽  
pp. 17-33
Author(s):  
Fredrik Boberg ◽  
Ruth Mottram ◽  
Nicolaj Hansen ◽  
Shuting Yang ◽  
Peter L. Langen

Abstract. The future rates of ice sheet melt in Greenland and Antarctica are an important factor when making estimates of the likely rate of sea level rise. Global climate models that took part in the fifth Coupled Model Intercomparison Project (CMIP5) have generally been unable to replicate observed rates of ice sheet melt. With the advent of the sixth Coupled Model Intercomparison Project (CMIP6), with a general increase in the equilibrium climate sensitivity, we here compare two versions of the global climate model EC-Earth using the regional climate model HIRHAM5 downscaling of EC-Earth for Greenland and Antarctica. One version (v2) of EC-Earth is taken from CMIP5 for the high-emissions Representative Concentration Pathway 8.5 (RCP8.5) scenario and the other (v3) from CMIP6 for the comparable high-emissions Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5) scenario. For Greenland, we downscale the two versions of EC-Earth for the historical period 1991–2010 and for the scenario period 2081–2100. For Antarctica, the periods are 1971–2000 and 2071–2100, respectively. For the Greenland Ice Sheet, we find that the mean change in temperature is 5.9 ∘C when downscaling EC-Earth v2 and 6.8 ∘C when downscaling EC-Earth v3. Corresponding values for Antarctica are 4.1 ∘C for v2 and 4.8 ∘C for v3. The mean change in surface mass balance at the end of the century under these high-emissions scenarios is found to be −290 Gt yr−1 (v2) and −1640 Gt yr−1 (v3) for Greenland and 420 Gt yr−1 (v2) and 80 Gt yr−1 (v3) for Antarctica. These distinct differences in temperature change and particularly surface mass balance change are a result of the higher equilibrium climate sensitivity in EC-Earth v3 (4.3 K) compared with 3.3 K in EC-Earth v2 and the differences in greenhouse gas concentrations between the RCP8.5 and the SSP5-8.5 scenarios.


2022 ◽  
pp. 312-337
Author(s):  
Ashajyothi C. ◽  
Harish K. Handral ◽  
Prabhurajeshwar C.

Nanomaterials have been attracting the attention of many researchers because of their size, high stability, affinity, and selectivity nature. Over the past decades, considerable intensive studies on many metal and metal-oxide nanomaterials have drawn consideration through their significant properties like size, shape, surface mass proportion, and their reactivity; all these properties are fundamental cornerstones for the turn of events and use of nanomaterials and nanoscale gadgets in biomedical areas. There is also a vast scope for a broad range of biofunctional applications such as antibacterial, antiviral, antifungal, antitumor, bioimaging, tissue engineering, biosensors, gene, and drug delivery. The authors review the nature, forms, and synthesis of nanomaterials here, with a thorough biological synthesis assessment. They also address the development of nanoparticles by microorganisms in depth, and this chapter also includes updates on different biological and biomedical applications of these bionanomaterials.


2021 ◽  
Author(s):  
Joanne S. Johnson ◽  
Ryan A. Venturelli ◽  
Greg Balco ◽  
Claire S. Allen ◽  
Scott Braddock ◽  
...  

Abstract. Widespread existing geological records from above the modern ice-sheet surface and outboard of the current ice margin show that the Antarctic Ice Sheet (AIS) was much more extensive at the Last Glacial Maximum (~20 ka) than at present. However, whether it was ever smaller than present during the last few millennia, and (if so) by how much, is known only for a few locations because direct evidence lies within or beneath the ice sheet, which is challenging to access. Here, we describe how retreat and readvance (henceforth “readvance”) of AIS grounding lines during the Holocene could be detected and quantified using subglacial bedrock, subglacial sediments, marine sediment cores, relative sea-level (RSL) records, radar data, and ice cores. Of these, only subglacial bedrock and subglacial sediments can provide direct evidence for readvance. Marine archives are of limited utility because readvance commonly covers evidence of earlier retreat. Nevertheless, stratigraphic transitions documenting change in environment may provide support for direct evidence from subglacial records, as can the presence of transgressions in RSL records. With independent age control, past changes in ice structure and flow patterns revealed by radar can be used to infer ice volume changes commensurate with readvance. Since ice cores capture changes in surface mass balance, elevation, and changes in atmospheric and oceanic circulation that are known to drive grounding-line migration, they also have potential for identifying readvance. A multidisciplinary approach is likely to provide the strongest evidence for or against a smaller-than-present AIS in the Holocene.


2021 ◽  
Vol 15 (12) ◽  
pp. 5423-5445
Author(s):  
Anna Simson ◽  
Henning Löwe ◽  
Julia Kowalski

Abstract. A coupled treatment of transport processes, phase changes and mechanical settling is the core of any detailed snowpack model. A key concept underlying the majority of these models is the notion of layers as deforming material elements that carry the information on their physical state. Thereby an explicit numerical solution of the ice mass continuity equation can be circumvented, although with the downside of virtual no flexibility in implementing different coupling schemes for densification, phase changes and transport. As a remedy we consistently recast the numerical core of a snowpack model into an extendable Eulerian–Lagrangian framework for solving the coupled non-linear processes. In the proposed scheme, we explicitly solve the most general form of the ice mass balance using the method of characteristics, a Lagrangian method. The underlying coordinate transformation is employed to state a finite-difference formulation for the superimposed (vapor and heat) transport equations which are treated in their Eulerian form on a moving, spatially non-uniform grid that includes the snow surface as a free upper boundary. This formulation allows us to unify the different existing viewpoints of densification in snow or firn models in a flexible way and yields a stable coupling of the advection-dominated mechanical settling with the remaining equations. The flexibility of the scheme is demonstrated within several numerical experiments using a modular solver strategy. We focus on emerging heterogeneities in (two-layer) snowpacks, the coupling of (solid–vapor) phase changes with settling at layer interfaces and the impact of switching to a non-linear mechanical constitutive law. Lastly, we discuss the potential of the scheme for extensions like a dynamical equation for the surface mass balance or the coupling to liquid water flow.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tancrède P. M. Leger ◽  
Andrew S. Hein ◽  
Daniel Goldberg ◽  
Irene Schimmelpfennig ◽  
Maximillian S. Van Wyk de Vries ◽  
...  

The last glacial termination was a key event during Earth’s Quaternary history that was associated with rapid, high-magnitude environmental and climatic change. Identifying its trigger mechanisms is critical for understanding Earth’s modern climate system over millennial timescales. It has been proposed that latitudinal shifts of the Southern Hemisphere Westerly Wind belt and the coupled Subtropical Front are important components of the changes leading to global deglaciation, making them essential to investigate and reconstruct empirically. The Patagonian Andes are part of the only continental landmass that fully intersects the Southern Westerly Winds, and thus present an opportunity to study their former latitudinal migrations through time and to constrain southern mid-latitude palaeo-climates. Here we use a combination of geomorphological mapping, terrestrial cosmogenic nuclide exposure dating and glacial numerical modelling to reconstruct the late-Last Glacial Maximum (LGM) behaviour and surface mass balance of two mountain glaciers of northeastern Patagonia (43°S, 71°W), the El Loro and Río Comisario palaeo-glaciers. In both valleys, we find geomorphological evidence of glacier advances that occurred after the retreat of the main ice-sheet outlet glacier from its LGM margins. We date the outermost moraine in the El Loro valley to 18.0 ± 1.15 ka. Moreover, a series of moraine-matching simulations were run for both glaciers using a spatially-distributed ice-flow model coupled with a positive degree-day surface mass balance parameterisation. Following a correction for cumulative local surface uplift resulting from glacial isostatic adjustment since ∼18 ka, which we estimate to be ∼130 m, the glacier model suggests that regional mean annual temperatures were between 1.9 and 2.8°C lower than present at around 18.0 ± 1.15 ka, while precipitation was between ∼50 and ∼380% higher than today. Our findings support the proposed equatorward migration of the precipitation-bearing Southern Westerly Wind belt towards the end of the LGM, between ∼19.5 and ∼18 ka, which caused more humid conditions towards the eastern margins of the northern Patagonian Ice Sheet a few centuries ahead of widespread deglaciation across the cordillera.


2021 ◽  
Author(s):  
Yongmei Gong ◽  
Irina Rogozhina

Abstract. Western Norway hosts many glacierized drainage basins with complex terrain and local climate. These drainage basins face challenges related to long-term planning of hydropower production and flood risk mitigation under global warming. To enable forward vision of such efforts, bias-corrected outputs from state-of-the-art regional climate models and reanalysis provide climatic forcing for impact simulations. We utilize a distributed, process-based snow evolution model with a daily temporal and 100 m × 100 m spatial resolution to investigate the applicability of different bias-corrected climate forcing data for multidecadal reconstructions of glacier surface mass balance and surface runoff regimes in western Norway. These simulations are driven by climatic forcing from the bias-corrected NORA10 hindcast in 2000–2014, which has been produced specifically for western Norway and treated as a benchmark dataset, as well as ten bias-corrected and uncorrected CORDEX outputs under different Representative Concentration Pathway scenarios in 2000–2020. Downscaled drainage basin-wide air temperature, precipitation and glacier-wide surface mass balance are then validated against observations. The variables mentioned above produced by the benchmark simulation match available observations well. The mean annual surface mass balance of glaciers in most glacierized basins is negative in 2001–2014, and its evolution is mainly correlated with trends in annual snowfall. There is a general negative west to east gradient in seasonal and annual unit area runoff, which peaks between 2005 and 2008 in most drainage basins. Snow meltwater is the largest contributor to both seasonal and annual runoff in all drainage basins except for two of the westernmost ones. Drainage basins with denser glacier coverage turn out to have a later peak runoff discharge date. The correction applied to the CORDEX forcing reversed the cold bias in the original datasets, while the agreement between bias-corrected and observed precipitation rates varies strongly from basin to basin. As a result, simulations driven by bias-corrected CORDEX datasets produce lower annual surface mass balance in the most and least glacierized drainage basins, i.e., Basin 1 and 17, respectively. They all produce more unit area runoff in Basin 1 and less in Basin 17 both seasonally and annually, with only a few exceptions. We conclude that the identified errors will likely be inherited by the results of the future projections, casting doubts on the applicability of bias-corrected CORDEX forcing to directly drive local scale projections and the modeled outputs in developing climate change adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document