Structure and properties of high-strength cast iron with a bainitic structure

1981 ◽  
Vol 23 (7) ◽  
pp. 483-487 ◽  
Author(s):  
A. G. Klemeshev ◽  
M. V. Mozharov
1990 ◽  
Vol 32 (4) ◽  
pp. 275-277 ◽  
Author(s):  
V. V. Belozerov ◽  
V. A. Guiva ◽  
A. I. Makhatilova ◽  
A. V. Radzivonchik ◽  
M. L. Turovskii

1983 ◽  
Vol 25 (4) ◽  
pp. 281-283
Author(s):  
A. F. Malyi ◽  
L. A. Solntsev ◽  
F. I. Yakovlev

Alloy Digest ◽  
1964 ◽  
Vol 13 (1) ◽  

Abstract MEEHANITE-GD is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-32. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (1) ◽  

Abstract MEEHANITE GA is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. Applications include machine tools, gears, shafts, and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on heat treating and machining. Filing Code: CI-5. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1959 ◽  
Vol 8 (3) ◽  

Abstract PEARLITIC MALLEABLE IRON is a high strength cast iron recommended for dependable service, strength and machinability in highly stressed parts at work in mobile and stationary mechanisms. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: CI-26. Producer or source: Albian Malleable Iron Company.


Alloy Digest ◽  
1977 ◽  
Vol 26 (9) ◽  

Abstract ZA-12 is a zinc-aluminum-copper foundry alloy recommended for general-purpose castings of high strength at moderate cost. Its properties are similar to those of cast iron; however, it was designed for use in nonferrous foundries to compete with cast-iron, bronze, brass and aluminum castings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion and wear resistance as well as casting, forming, heat treating, machining, and surface treatment. Filing Code: Zn-31. Producer or source: Eastern Alloys Inc.. See also Alloy Digest Zn-49, May 1990.


2020 ◽  
Vol 2020 (6) ◽  
pp. 20-26
Author(s):  
O.A. Gaivoronskyi ◽  
◽  
V.D. Poznyakov ◽  
O.M. Berdnikova ◽  
T.O. Alekseenko ◽  
...  

2005 ◽  
Vol 500-501 ◽  
pp. 565-572 ◽  
Author(s):  
H. Meuser ◽  
F. Grimpe ◽  
S. Meimeth ◽  
C.J. Heckmann ◽  
C. Träger

This paper deals with the development of low carbon NbTiB micro-alloyed high strength low alloy steel for heavy plates with high wall thickness. In the production of heavy plate it is remarkably difficult to achieve a combination of high strength and good low-temperature toughness. Bainitic microstructures have shown the capability to attain such requirements. To achieve a bainitic microstructure even for heavy wall products the formation of bainite can be promoted and supported by the use of small amounts of boron as a micro-alloying element. This industrial research project is based on the addition of small amounts of boron to promote the desired bainitic structure. Mill rolling trials were carried out to determine the optimum process parameters. The results of experimental mill rolling trials on 35 mm plates will be presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document