corrosion and wear
Recently Published Documents


TOTAL DOCUMENTS

603
(FIVE YEARS 140)

H-INDEX

38
(FIVE YEARS 9)

2022 ◽  
Vol 1049 ◽  
pp. 124-129
Author(s):  
Sergey Yu. Kireev ◽  
Svetlana N. Kireeva ◽  
Anatoly Frolov ◽  
Alfiya Yangurazova ◽  
Konstantin Anopin

Technological parameters for electroplating cadmium alloy (Cd (24)-In and Cd (33)-Sn) coatings from low toxic solutions have been proposed. Since the fabricated alloy coatings possess low internal stress and microhardness, good adhesion property, high corrosion and wear resistance, they can be used as protective coatings for machine building products to enhance reliability and operability thereof. The presence of good solderability and low values of transient electric resistance in climatic testing favor these coatings to be applied in hetero-structured contact systems of instrument making products for increasing their reliability and operability in a tropical marine climate.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Dhani Ram Dhakal ◽  
Yuwaraj K. Kshetri ◽  
Bina Chaudhary ◽  
Tae-Ho Kim ◽  
Soo Wohn Lee ◽  
...  

Electroless Nickel–Phosphorus (Ni-P) coating is recognized mostly for its outstanding corrosion and wear-resistant behavior. The intrinsic corrosion and wear-resistant properties of Ni-P-based coating could be further upgraded by incorporating appropriate second-phase additive particles into the coating matrix. However, such properties of the Ni-P-based coating greatly rely on the surface and microstructural evolution arising with the co-deposition of the additive particles. In this study, submicron Si3N4 (average size ~200 nm) and nano Si3N4 (average size ~20 nm) particles were incorporated while depositing a Ni-P alloy in a low-carbon steel substrate to develop the Ni-P-Si3N4 composites through the electroless coating method. The 20 nm Si3N4-incorporated composite coating constituted fewer defects such as cavities and micropores on the surface, but such defects significantly appeared on the surface of the composite after the incorporation of 200 nm Si3N4 nanoparticles. Subsequently, the composite Ni-P-Si3N4, developed with the co-deposition of 20 nm nanoparticles, is enriched with enhanced anticorrosion characteristics compared with the composite developed with 200 nm nanoparticles. The enhancement of anticorrosion behavior was attributed mainly to the Si3N4 nanoparticles that covered the substantial volume of the coating and led to inhibit the formation of corrosion active sites such as defects and metallic Ni phase.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1959
Author(s):  
Man Liu ◽  
Wei Wang ◽  
Haijiang Hu ◽  
Feng Cai ◽  
Sheng Liu ◽  
...  

The effects of boro-austempering treatment on growth kinetics of borided layers, microstructure, and properties in a medium-carbon bainitic steel were investigated. The microstructure, distribution in coatings, corrosion, and wear properties of boro-austempered steels were characterized by a microscope, field-emission electron probe micro analyzer, scanning vibrating electrode technique system and wear resistance machine. The results show that the corrosion resistance of steels in different corrosive mediums was significantly enhanced by boro-austempering treatment. In addition, the wear performance of borided layers was improved by more than two times compared to bainitic substrates, proving a better wear property of samples treated through the boro-austempering route. The solubility of carbon and silicon in borides is very little. In addition, the dual-phase coating of FeB and Fe2B was observed, and the internal stress induced during the growth of Fe2B and FeB was almost eliminated. The preferential crystallographic growth directions of Fe2B and FeB are [001] and [010], respectively, which belongs to the (100) plane. Finally, the kinetics equation d2 = 0.125·t of the borided layers at 1223 K was established.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7379
Author(s):  
Hao Yin ◽  
Jian Liang ◽  
Xiaoyong Ren ◽  
Jie Zhao ◽  
Xin He ◽  
...  

Coating on the surface is one of the main ways to improve the corrosion resistance and wear resistance of materials. In this work, the corrosion, erosion, and wear resistance of WC–10Co4Cr coating and 27CrMoV substrate were compared by simulating the actual working conditions of the drill pipe. The simulation results show that the most serious corrosion occurred at the pipe body and the dominating erosion arose at the pipe joint closing to the inlet of the flow field. WC–10Co4Cr coating has excellent protection to 27CrMoV substrate, resulting in a 400 mV increase in corrosion potential, a two-orders-of-magnitude decrease in the corrosion current, and four times the improvement of the impedance value. The erosion resistance of the WC–10Co4Cr coating increased to more than 30% higher than that of the 27CrMoV substrate. The friction coefficient of the WC–10Co4Cr coating was much lower than that of the 27CrMoV substrate, and the wear resistance of the coating was higher than that of the substrate.


Sign in / Sign up

Export Citation Format

Share Document