cast iron
Recently Published Documents


TOTAL DOCUMENTS

9336
(FIVE YEARS 1397)

H-INDEX

59
(FIVE YEARS 9)

Author(s):  
S Dhayaneethi ◽  
J Anburaj ◽  
S Arivazhagan

High Chromium White Cast Iron (HCWCI) plays a major role in manufacturing of wear-resistant components. Due to unique wear resistance property, attribution to the additions of carbide forming elements, they have been used for mill liner applications. By varying the wt% of alloying elements such as Cr, Ti, and Mo, the wear resistance and impact strength of High Chromium Cast Iron (HCCI) can be increased. To enhance the wear resistance property according to Central Composite Design (CCD), 16 samples were fabricated by varying the wt% of alloying elements. To fabricate the samples, furan sand molds were prepared and used for the further casting process. The properties of Furan sand mold enhance the mechanical properties and reduce the mold rejection rate, production time, etc. To attain the optimum Wear Rate (WR) and Impact Strength (IS) value without dominance, optimization techniques such as Response Surface Methodological (RSM) and Particle swarm optimization (PSO) are employed to solve the multi-objective problem. The RSM and PSO predicted optimum solutions are compared by using the Weighted Aggregated Sum Product Assessment (WASPAS) ranking method. The WASPAS result revealed that when compared to the RSM result, the PSO predicted optimal wt% of chemical composition (22 wt % Cr, 3 wt % Ti, and 2.99 wt % Mo) gives the optimum WR value (53 mm3/min) and IS value (3.77 J). To validate the PSO result, experiments were carried out for the predicted wt% of alloying elements and tested. The difference between the PSO predicted result and experimental result is less than 5% error which clearly shows that PSO is an effective method to solve the multi-objective problem.


2022 ◽  
pp. 118-130
Author(s):  
Stanislav Popov ◽  
Liliia Frolova ◽  
Oleksii Rebrov ◽  
Yevheniia Naumenko ◽  
Оlenа Postupna ◽  
...  

The object of research in this work was cast iron for machine-building parts, alloyed with Al. The possibility of improving the mechanical properties of cast iron by choosing the optimal Mn – Al combinations, depending on the carbon content in the cast iron, was determined. The study was carried out on the basis of available retrospective data of serial industrial melts by constructing the regression equation for the ultimate strength of cast iron in the three-factor space of the input variables C – Mn – Al. The optimization problem was solved by the ridge analysis method after reducing the dimension of the factor space by fixing the carbon content at three levels: C = 3 %, C = 3.3 %, and C = 3.6 %. It was found that the maximum values of the ultimate strength are achieved at the minimum level of carbon content (C = 3%) and are in the range of values close to 300 MPa. In this case, the Al content is in the range (2.4–2.6) %, and the Mn content is about 0.82 %. With an increase in the carbon content, there is a tendency to a decrease in the content of Mn and Al in the alloy, which is necessary to ensure the ultimate strength close to 300 MPa. The results of the ridge analysis of the response surface also showed that at the upper limit of the carbon content (C = 3.6%), it is not possible to reach the ultimate strength of 300 MPa in the existing range of Mn and Al variation. All solutions are verified for the following ranges of input variables C = (2.94–3.66) %, Mn = (0.5–1.1) %, Al = (1.7–2.9) %. Graphical-analytical descriptions of the optimal Mn – Al ratios are obtained, depending on the actual content of carbon in the alloy, which make it possible to purposefully select the optimal melting modes by controlling the tensile strength of the alloy


2022 ◽  
Author(s):  
A. Veselovsky

Abstract. The article presents the calculations of diffusion indices of saturation of high-strength cast iron VCh 60 from powder filling. Carbide-forming elements were used as diffusers: vanadium, chromium and manganese. As a result of the research, empirical equations have been established for predicting the thickness of strengthening diffusion coatings depending on the temperature and saturation time.


2022 ◽  
Author(s):  
D. Boldyrev

Abstract. Wear and crack resistance are important operational characteristics of brake discs. The paper presents the most optimal concentration of sulfur in cast iron, which ensures its least wear, and discusses the implementation of the front brake discs manufacture from Gh190 cast iron having 0.11 ... 0.13% sulfur content at contrast to the 0.01 ... 0.03% sulfur content, and proves the change leads to a significant increase in wear and frictional properties of the discs. In the course of research, it is found that the increase in the crack resistance of brake discs is possible due to the improvement of the thermophysical properties of cast iron with the increase in the carbon content (up to 3.55 ... 3.60%) and the decrease in the silicon content (up to 1.45 ... 1.50%), while the carbon equivalent is constant.


Author(s):  
Varun Singhal ◽  
Om Prakash Pandey

In this investigation, ilmenite mineral reinforced Al–Si alloy matrix composite (AMC) has been developed. The wear behavior of the developed composites has been studied for their end application as break drum material to replace cast iron used in automobile industries. Ilmenite is one of the major sea beach mineral. AMC has been prepared through a low-cost stir-casting method in which 1 wt.% graphite (Gr)/tin (Sn) as a solid lubricant has been added during the fabrication of composites itself. The optical micrographs of AMC revealed uniform distribution of ilmenite particles throughout the matrix. The wear rate of the base LM30 alloy containing 17% Si and the developed composites has been studied at different normal loads at a constant velocity of 1.6 m.s−1. Optimized data revealed a significant wear rate reduction due to solid lubrication provided by Gr/Sn (∼32%). The wear rate of composites has been compared with traditional cast iron used in brake drums under similar experimental conditions. Composites exhibit nearly identical wear behavior throughout the test. The microstructural study of wear track and debris revealed that Sn and Gr used as solid lubricants played a vital role in reducing the wear loss of the prepared composites. A theoretical study of frictional heat generated during dry sliding and its dissipation has been done to establish the operative wear mechanism in the composites.


2022 ◽  
Vol 275 ◽  
pp. 125232
Author(s):  
Riki Hendra Purba ◽  
Kazumichi Shimizu ◽  
Kenta Kusumoto ◽  
Yila Gaqi ◽  
Takayuki Todaka

Sign in / Sign up

Export Citation Format

Share Document