Characteristics of enhanced and low-amplitude cosmic-ray diurnal variation

Solar Physics ◽  
1995 ◽  
Vol 159 (1) ◽  
pp. 191-202 ◽  
Author(s):  
A. G. Ananth ◽  
K. Kudela ◽  
D. Venkatesan
1954 ◽  
Vol 93 (3) ◽  
pp. 551-553 ◽  
Author(s):  
J. Firor ◽  
F. Jory ◽  
S. B. Treiman

Pramana ◽  
2007 ◽  
Vol 68 (3) ◽  
pp. 407-422 ◽  
Author(s):  
Rajesh K Mishra ◽  
Rekha Agarwal Mishra

Pramana ◽  
2005 ◽  
Vol 64 (2) ◽  
pp. 197-206
Author(s):  
Rajesh K. Mishra ◽  
Rekha Agarwal Mishra

1936 ◽  
Vol 50 (9) ◽  
pp. 869-869 ◽  
Author(s):  
Julian L. Thompson

1955 ◽  
Vol 33 (10) ◽  
pp. 577-587
Author(s):  
S. D. Chatterjee ◽  
J. N. Bloom

Cosmic-ray data from a high pressure integrating ionization chamber, obtained at Ottawa, for 129 complete days during September 1950 to July 1951 are subjected to rigorous statistical analysis. The barometric coefficient is −0.19% per mm. of Hg for the period covered by this analysis. The results also indicate a physically significant 24-hr. wave in cosmic-ray intensity, with an amplitude of 0.12% of the total intensity, having its maximum at about 10.40 a.m. local mean time. The existence of the semidiurnal wave, however, is not physically significant.


1967 ◽  
Vol 45 (8) ◽  
pp. 2733-2748 ◽  
Author(s):  
Masahiro Kodama

Statistical studies of periodic fluctuations of the cosmic-ray diurnal variation have been performed, using neutron and meson component data obtained by the high-counting-rate cosmic-ray monitors at Deep River. The data cover an interval from May 1962 to October 1964, a period of descending solar activity ending near the solar minimum. It is shown that a 27-day recurrence tendency of the amplitude of the diurnal variation occasionally appears as well as shorter recurrent variations, ranging from one-half to one-sixth of the solar rotation period. The correlations of these fluctuations with some typical solar and terrestrial indices are examined in order to search for possible origins of the shorter recurrent variations. A possible connection with the Kp index exists.


1968 ◽  
Vol 46 (10) ◽  
pp. S839-S843 ◽  
Author(s):  
G. Cini-Castagnoli ◽  
M. A. Dodero ◽  
L. Andreis

Cosmic-ray intensity measurements have been carried out during the last year at a depth of 70 m.w.e. in the Monte dei Cappuccini laboratory in Torino, using solid vertical semicubical scintillator telescopes with a total area of 2 m2. Hourly data for 245 days corrected for barometric changes have been analyzed for the solar, apparent sidereal, and antisidereal daily variations whose harmonics are as follows:[Formula: see text]The true sidereal diurnal variation is estimated to have an amplitude of 0.019% with a time of maximum at 1720 h local sidereal time. The solar diurnal variation at different depths underground follows the energy dependence calculated with Axford's theory. The solar semidiurnal variation shows instead a fairly constant value at different μ energies. Its order of magnitude agrees with that expected as a result of Fermi acceleration in collisions of primaries moving in roughly solar and antisolar directions with solar wind inhomogeneities.


Sign in / Sign up

Export Citation Format

Share Document