amplitude wave
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
pp. 110-119
Author(s):  
Galyna Ivanovna Sokol ◽  
Vladyslav Yurievich Kotlov ◽  
Elena Sergeevna Mironenko ◽  
Sergey Yurievich Kirichenko

Author(s):  
Peter Hitchcock

AbstractA low-dimensional dynamical system that describes dynamical variability of the stratospheric polar vortex is presented. The derivation is based on a linearized, contour-dynamics representation of quasigeostrophic shallow water flow on a polar f-plane. The model consists of a single linear wave mode propagating on a near-circular patch of constant potential vorticity (PV). The PV jump at the vortex edge serves as an additional degree of freedom. The wave is forced by surface topography, and interacts with the vortex through a simplified parameterization of diabatic wave/mean flow interaction. The approach can be generalized to other geometries.The resulting three-component system depends on four non-dimensional parameters, and the structure of the steady state solutions can be determined analytically in some detail. Despite its extreme simplification, the model exhibits variability that is closely analogous to the Holton-Mass model, a well-known and more complex dynamical model of stratospheric variability. The present model exhibits two stable steady solutions, one consisting of a strong vortex with a small amplitude wave and the second consisting of a weak vortex with a large amplitude wave. Periodic and aperiodic limit cycles are also identified, analogous to similar solutions in the Holton-Mass model. Model trajectories also exhibit a number of behaviors that have been identified in observations. A key insight is that the time-mean state of the vortex is predominantly controlled by the properties of the linear mode, while the strength of the topographic forcing plays a far weaker role away from bifurcations.


2021 ◽  
Vol 118 (22) ◽  
pp. e2021135118
Author(s):  
Robert S. Fischer ◽  
Xiaoyu Sun ◽  
Michelle A. Baird ◽  
Matt J. Hourwitz ◽  
Bo Ri Seo ◽  
...  

Contact guidance is a powerful topographical cue that induces persistent directional cell migration. Healthy tissue stroma is characterized by a meshwork of wavy extracellular matrix (ECM) fiber bundles, whereas metastasis-prone stroma exhibit less wavy, more linear fibers. The latter topography correlates with poor prognosis, whereas more wavy bundles correlate with benign tumors. We designed nanotopographic ECM-coated substrates that mimic collagen fibril waveforms seen in tumors and healthy tissues to determine how these nanotopographies may regulate cancer cell polarization and migration machineries. Cell polarization and directional migration were inhibited by fibril-like wave substrates above a threshold amplitude. Although polarity signals and actin nucleation factors were required for polarization and migration on low-amplitude wave substrates, they did not localize to cell leading edges. Instead, these factors localized to wave peaks, creating multiple “cryptic leading edges” within cells. On high-amplitude wave substrates, retrograde flow from large cryptic leading edges depolarized stress fibers and focal adhesions and inhibited cell migration. On low-amplitude wave substrates, actomyosin contractility overrode the small cryptic leading edges and drove stress fiber and focal adhesion orientation along the wave axis to mediate directional migration. Cancer cells of different intrinsic contractility depolarized at different wave amplitudes, and cell polarization response to wavy substrates could be tuned by manipulating contractility. We propose that ECM fibril waveforms with sufficiently high amplitude around tumors may serve as “cell polarization barriers,” decreasing directional migration of tumor cells, which could be overcome by up-regulation of tumor cell contractility.


2021 ◽  
Author(s):  
Mengling Wang ◽  
Yang Zhang ◽  
Jian Lu

<p>Understanding the formation and evolution mechanisms of Ural blocking (UB) is of great importance for the prediction of UB and relevant extremes in east Asia. Using the 6-hourly ERA-Interim reanalysis data, this study quantifies the conservative and nonconservative processes in the lifecycle of UB through the lens of the hybrid Eulerian-Lagrangian local finite-amplitude wave activity (LWA) diagnostics. It is found that (i) as a wave activity source, eddy heat flux works to not only initiate the UB, but also prevent the wave activity of the blocking from dispersing downstream---the key characteristic of blocking; (ii) both the wave propagation and wave advection mechanisms are indispensable for the evolution of UB, playing a tug-of-war on the downstream development of wave activity; (iii) throughout the lifespan of UB, diabatic heating provides the most important damping mechanism for the wave activity both upstream and downstream.</p>


Author(s):  
Baoliang Wang ◽  
Hongfei Wang ◽  
Zhenguo Yao

Sign in / Sign up

Export Citation Format

Share Document