wave trains
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 107)

H-INDEX

43
(FIVE YEARS 5)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Evgeny P. Zemskov ◽  
Mikhail A. Tsyganov ◽  
Genrich R. Ivanitsky ◽  
Werner Horsthemke

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Iskander Abroug ◽  
Nizar Abcha ◽  
Fahd Mejri ◽  
Emma Turki ◽  
Elena Ojeda

Vortex shedding behind an elastically mounted circular cylinder in the presence of group focused waves propagating upstream was investigated using a classical approach (time series and FFT) and nonclassical approach (complex 2D Morlet wavelets). Wavelet analysis emerged as a novel solution in this regard. Our results include wave trains with different nonlinearities propagating in different water depths and derived from three types of spectra (Pierson–Moskowitz, JONSWAP (γ = 3.3 or γ = 7)). It was found that the generated wave trains could modify regimes of shedding behind the cylinder, and subharmonic frequency lock-in could arise in particular situations. The occurrence of a lock-in regime in the case of wave trains propagating in intermediate water locations was shown experimentally even for small nonlinearities. Moreover, the application of time-localized wavelet analysis was found to be a powerful approach. In fact, the frequency lock-in regime and its duration could be readily identified from the wavelet-based energy and its corresponding ridges.


2021 ◽  
Author(s):  
Fei Liu ◽  
Bin Wang ◽  
Yu Ouyang ◽  
Hui Wang ◽  
Shaobo Qiao ◽  
...  

Abstract Accurate prediction of global land monsoon rainfall on a subseasonal (2-8 weeks) time scale has become a worldwide demand. Current forecasts of weekly-mean rainfall in most monsoon regions, however, have limited skills beyond two weeks. Given that two-thirds of the world’s population lives in the monsoon regions, this challenge calls for a more profound understanding of monsoon intraseasonal variability (ISVs). Our comparison of individual land monsoons shows that the high-frequency (HF; 8-20 days) ISV, crucial for the Week 2 and Week 3 predictions, accounts for about 53-70% of the total (8-70 days) ISV in various monsoons, and the low-frequency (LF; 20-70 days) ISV has a relatively high contribution over Australia (AU; 47%), South Asia (SA; 43%), and South America (SAM; 40%) monsoons. The leading modes of HFISVs in Northern Hemisphere (NH) monsoons primarily originate from convectively coupled equatorial Rossby waves (Asia), mixed Rossby-gravity waves (North America, NAM), and Kelvin waves (northern Africa, NAF), while from mid-latitude wave trains for Southern Hemisphere (SH) monsoons and East Asian (EA) monsoon. The Madden-Julian Oscillation (MJO) directly regulates LFISVs in the Asian-Australian monsoon while affecting the American and African monsoons by exciting Kelvin waves and mid-latitude teleconnections. During the past four decades, the HF (LF) ISVs have considerably intensified over the Asian (Asian-Australian) monsoon but weakened over the American (SAM) monsoon. Subseasonal-to-seasonal (S2S) prediction models do exhibit higher subseasonal (Weekly 2-Weekly 4) prediction skills over SA, AU, and SAM monsoons that have larger LFISV contributions than the other monsoons. The results suggest an urgent need to improve the simulation of convectively coupled equatorial waves and two-way interactions between regional monsoon ISVs and mid-latitude processes and between MJO and regional monsoons, especially under the global warming scenarios.


2021 ◽  
Vol 9 (12) ◽  
pp. 1369
Author(s):  
Weida Xia ◽  
Yuxiang Ma ◽  
Guohai Dong ◽  
Jie Zhang ◽  
Xiaozhou Ma

Numerical simulations were performed to study the long-distance evolution of irregular waves in deep water. It was observed that some solitons, which are the theoretical solutions of the nonlinear Schrödinger equation, emerged spontaneously as irregular wave trains propagated in deep water. The solitons propagated approximately at a speed of the linear group velocity. All the solitons had a relatively large amplitude and one detected soliton’s height was two times larger than the significant wave height of the wave train, therefore satisfying the rogue wave definition. The numerical results showed that solitons can persist for a long distance, reaching about 65 times the peak wavelength. By analyzing the spatial variations of these solitons in both time and spectral domains, it is found that the third-and higher-order resonant interactions and dispersion effects played significant roles in the formation of solitons.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 253-260
Author(s):  
LI Lei ◽  
P.W. CHAN ◽  
S. M. TSE

This paper documents the observations by radar of wave trains downstream of mountains in a tropical cyclone situation.  The wind disturbances associated with the wave trains together with the background strong southeasterly flow result in the occurrence of low-level wind shear as detected by the radar. So the case is not just scientifically interesting, but it also has practical application value.  The wave trains can be simulated by using a computational fluid dynamics model initialized homogeneously by the upper air ascent data at the time close to that the occurrence of the wave trains.  This points to the potential of using such a model in simple setup to forecast the occurrence of low-level wind shear.


2021 ◽  
Author(s):  
Yuanpu Li ◽  
Zhiping Wen

AbstractThe exploration of the trend in stratospheric sudden warmings (SSWs) is conducive to predict SSWs in the future. Utilizing the National Centre for Environmental Prediction Reanalysis (NCEP) (1948–2020) and Japanese 55-year Reanalysis (JRA55) (1958–2020), we investigated the duration and strength of SSWs in the Northern Hemisphere occurred in the boreal winter (December–February). We found the duration of SSWs tends to increase and the strength of SSWs tends to strengthen from 1948 to 2003. After 2003, these trends did not continue. We utilized the observed cloudiness from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) to find that the convective activities in the tropical Central Pacific were enhanced during 1948–2003, and the enhancement of the convective activities did not continue after 2003. The circulation anomalies caused by the enhanced convective activities propagate to the high latitudes through wave trains. The anomalies of circulation and the climatological circulation at high latitudes interfere with each other and superimpose, which has a significant impact on planetary wave 1 (PW1). As a result, the PW1 also showed an increasing trend from 1948 to 2003 and a decreasing trend after 2003. After the stratosphere filters out the planetary wave with a large wavenumber, PW1 accounts for more proportion of planetary waves, which causes the trend in SSWs to change.


Author(s):  
Andrew Hoell ◽  
Trent W. Ford ◽  
Molly Woloszyn ◽  
Jason A. Otkin ◽  
Jon Eischeid

AbstractCharacteristics and predictability of drought in the Midwestern United States, spanning the Great Plains to the Ohio Valley, at local and regional scales are examined during 1916-2015. Given vast differences in hydroclimatic variability across the Midwest, drought is evaluated in four regions identified using a hierarchical clustering algorithm applied to an integrated drought index based on soil moisture, snow water equivalent, and three-month runoff from land surface models forced by observed analyses. Highlighting the regions containing the Ohio Valley (OV) and Northern Great Plains (NGP), the OV demonstrates a preference for sub-annual droughts, the timing of which can lead to prevalent dry epochs, while the NGP demonstrates a preference for annual-to-multi-annual droughts. Regional drought variations are closely related to precipitation, resulting in a higher likelihood of drought onset or demise during wet seasons: March-November in the NGP and all year in the OV, with a preference for March-May and September-November. Due to the distinct dry season in the NGP, there is a higher likelihood of longer drought persistence, as the NGP is four times more likely to experience drought lasting at least one year compared to the OV. While drought variability in all regions and seasons are related to atmospheric wave trains spanning the Pacific-North American sector, longer-lead predictability is limited to the OV in December-February because it is the only region/season related to slow-varying sea surface temperatures consistent with El Niño-Southern Oscillation. The wave trains in all other regions appear to be generated in the atmosphere, highlighting the importance of internal atmospheric variability in shaping Midwestern drought.


2021 ◽  
pp. 1
Author(s):  
Lei Du ◽  
Riyu Lu

AbstractThe present study investigates the intraseasonal oscillations over the North Pacific during summer based on the ERA-Interim reanalysis dataset. It is shown that the main component of intraseasonal variations in meridional wind is dominated by 10–30-day variability. Zonally-oriented wave trains are identified over the North Pacific at this band, with a zonal wavenumber 6. The wave trains exhibit an equivalent-barotropic structure, with the maximum amplitude in the upper troposphere, and are manifested as quasi-stationary Rossby waves with the energy dispersing eastward. The wave trains do not show a phase-locking feature, that is, they have no preferred geographical locations in the zonal direction. Furthermore, energy analyses suggest that the intraseasonal waves gain energy through baroclinic energy conversion, while the barotropic energy conversion plays a negligible role. The present results have implications for better understanding and forecasting weather and climate in North America, since the intraseasonal waves over the North Pacific may act as precursory signals for extreme events occurring over North America.


Sign in / Sign up

Export Citation Format

Share Document