Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site

1980 ◽  
Vol 12 (3-4) ◽  
pp. 111-136 ◽  
Author(s):  
S. J. D. Karlish
2016 ◽  
Vol 82 (13) ◽  
pp. 3846-3856 ◽  
Author(s):  
Matthew Wilding ◽  
Thomas S. Peat ◽  
Janet Newman ◽  
Colin Scott

ABSTRACTWe previously isolated the transaminase KES23458 fromPseudomonassp. strain AAC as a promising biocatalyst for the production of 12-aminododecanoic acid, a constituent building block of nylon-12. Here, we report the subsequent characterization of this transaminase. It exhibits activity with a broad substrate range which includes α-, β-, and ω-amino acids, as well as α,ω-diamines and a number of other industrially relevant compounds. It is therefore a prospective candidate for the biosynthesis of a range of polyamide monomers. The crystal structure of KES23458 revealed that the protein forms a dimer containing a large active site pocket and unusual phosphorylated histidine residues. To infer the physiological role of the transaminase, we expressed, purified, and characterized a dehydrogenase from the same operon, KES23460. Unlike the transaminase, the dehydrogenase was shown to be quite selective, catalyzing the oxidation of malonic acid semialdehyde, formed from β-alanine transamination via KES23458. In keeping with previous reports, the dehydrogenase was shown to catalyze both a coenzyme A (CoA)-dependent reaction to form acetyl-CoA and a significantly slower CoA-independent reaction to form acetate. These findings support the original functional assignment of KES23458 as a β-alanine transaminase. However, a seemingly well-adapted active site and promiscuity toward unnatural compounds, such as 12-aminododecanoic acid, suggest that this enzyme could perform multiple functions forPseudomonassp. strain AAC.IMPORTANCEWe describe the characterization of an industrially relevant transaminase able to metabolize 12-aminododecanoic acid, a constituent building block of the widely used polymer nylon-12, and we report the biochemical and structural characterization of the transaminase protein. A physiological role for this highly promiscuous enzyme is proposed based on the characterization of a related gene from the host organism. Molecular dynamics simulations were carried out to compare the conformational changes in the transaminase protein to better understand the determinants of specificity in the protein. This study makes a substantial contribution that is of interest to the broad biotechnology and enzymology communities, providing insights into the catalytic activity of an industrially relevant biocatalyst as well as the biological function of this operon.


2014 ◽  
Vol 70 (5) ◽  
pp. 1484-1490 ◽  
Author(s):  
Sally Dempster ◽  
Stephen Harper ◽  
John E. Moses ◽  
Ingrid Dreveny

Lactate dehydrogenase A (LDH-A) is a key enzyme in anaerobic respiration that is predominantly found in skeletal muscle and catalyses the reversible conversion of pyruvate to lactate in the presence of NADH. LDH-A is overexpressed in many tumours and has therefore emerged as an attractive target for anticancer drug discovery. Crystal structures of human LDH-A in the presence of inhibitors have been described, but currently no structures of the apo or binary NADH-bound forms are available for any mammalian LDH-A. Here, the apo structure of human LDH-A was solved at a resolution of 2.1 Å in space groupP4122. The active-site loop adopts an open conformation and the packing and crystallization conditions suggest that the crystal form is suitable for soaking experiments. The soaking potential was assessed with the cofactor NADH, which yielded a ligand-bound crystal structure in the absence of any inhibitors. The structures show that NADH binding induces small conformational changes in the active-site loop and an adjacent helix. A comparison with other eukaryotic apo LDH structures reveals the conservation of intra-loop interactions. The structures provide novel insight into cofactor binding and provide the foundation for soaking experiments with fragments and inhibitors.


1986 ◽  
Vol 56 (03) ◽  
pp. 349-352 ◽  
Author(s):  
A Tripodi ◽  
A Krachmalnicoff ◽  
P M Mannucci

SummaryFour members of an Italian family (two with histories of venous thromboembolism) had a qualitative defect of antithrombin III reflected by normal antigen concentrations and halfnormal antithrombin activity with or without heparin. Anti-factor Xa activities were consistently borderline low (about 70% of normal). For the propositus’ plasma and serum the patterns of antithrombin III in crossed-immunoelectrophoresis with or without heparin were indistinguishable from those of normal plasma or serum. A normal affinity of antithrombin III for heparin was documented by heparin-sepharose chromatography. Affinity adsorption of the propositus’ plasma to human α-thrombin immobilized on sepharose beads revealed defective binding of the anti thrombin III to thrombin-sepharose. Hence the molecular defect of this variant appears to be at the active site responsible for binding and neutralizing thrombin, thus accounting for the low thrombin inhibitory activity.


2020 ◽  
Author(s):  
Trixia M. Buscagan ◽  
Kathryn A. Perez ◽  
Ailiena O. Maggiolo ◽  
Douglas C. Rees ◽  
Thomas Spatzal

2021 ◽  
Vol 143 (7) ◽  
pp. 2757-2768
Author(s):  
Bo Zhuang ◽  
Daisuke Seo ◽  
Alexey Aleksandrov ◽  
Marten H. Vos
Keyword(s):  

1990 ◽  
Vol 265 (4) ◽  
pp. 2038-2041
Author(s):  
C G Wilde ◽  
J L Snable ◽  
J E Griffith ◽  
R W Scott

1994 ◽  
Vol 269 (10) ◽  
pp. 7387-7389
Author(s):  
H. Takei ◽  
Y. Gat ◽  
Z. Rothman ◽  
A. Lewis ◽  
M. Sheves

Sign in / Sign up

Export Citation Format

Share Document