inhibitory activity
Recently Published Documents





2022 ◽  
Vol 196 ◽  
pp. 113081
Wei-Wei Yu ◽  
Jin-Tao Ma ◽  
Juan He ◽  
Zheng-Hui Li ◽  
Ji-Kai Liu ◽  

2022 ◽  
Vol 196 ◽  
pp. 113083
Xian-Zhe Fan ◽  
Yang-Li Zhu ◽  
Rong-Wen Yuan ◽  
Li Deng ◽  
Cheng Hou ◽  

2022 ◽  
Vol 194 ◽  
pp. 113005
Ya-Ping Huang ◽  
Yun-Shan Wang ◽  
Bi-Wen Liu ◽  
Zhe Song ◽  
Xiao-Shuang Liang ◽  

2022 ◽  
Vol 12 ◽  
Shreedhar S. Otari ◽  
Suraj B. Patel ◽  
Manoj M. Lekhak ◽  
Savaliram G. Ghane

Barleria terminalis Nees and Calacanthus grandiflorus (Dalzell) Radlk. are endemic medicinal plants of the Western Ghats of India. The aim of the present research work was to investigate phytochemical profile, potent bioactives using RP-HPLC, LC-MS and GC-MS and to evaluate their bioactivities. Acetone was found to be the best extraction medium for separating phytochemicals. Similarly, acetone and methanol extracts exhibited potential antioxidant properties. Ethanol extract of B. terminalis stem showed potent acetylcholinesterase (AChE) (89.10 ± 0.26%) inhibitory activity. Inhibition of α-amylase (36.96 ± 2.96%) activity was observed the best in ethanol extract of B. terminalis leaves and α-glucosidase inhibitory activity (94.33 ± 0.73%) in ethanol extract of C. grandiflorus stem. RP-HPLC analysis confirmed the presence of several phenolic compounds (gallic acid, hydroxybenzoic acid, vanillic acid, chlorogenic acid and coumaric acid) and phenylethanoid glycoside (verbascoside). The highest phenolics content were observed in B. terminalis (GA (4.17 ± 0.002), HBA (3.88 ± 0.001), VA (4.54 ± 0.001), CHLA (0.55 ± 0.004) mg/g DW, respectively). Similarly, LC-MS and GC-MS revealed the presence of phenolics, glycosides, terpenes, steroids, fatty acids, etc. Moreover, positive correlation between studied phytochemicals and antioxidants was observed in principal component analysis. Based on the present investigation, we conclude that B. terminalis and C. grandiflorus can be further explored for their active principles particularly, phenylethanoid glycosides and iridoids and their use in drug industry for pharmaceutical purposes.

2022 ◽  
Vol 12 (1) ◽  
Milena do Amaral ◽  
Ana Camila Oliveira Freitas ◽  
Ariana Silva Santos ◽  
Everton Cruz dos Santos ◽  
Monaliza Macêdo Ferreira ◽  

AbstractProtease inhibitors (PIs) are important biotechnological tools of interest in agriculture. Usually they are the first proteins to be activated in plant-induced resistance against pathogens. Therefore, the aim of this study was to characterize a Theobroma cacao trypsin inhibitor called TcTI. The ORF has 740 bp encoding a protein with 219 amino acids, molecular weight of approximately 23 kDa. rTcTI was expressed in the soluble fraction of Escherichia coli strain Rosetta [DE3]. The purified His-Tag rTcTI showed inhibitory activity against commercial porcine trypsin. The kinetic model demonstrated that rTcTI is a competitive inhibitor, with a Ki value of 4.08 × 10–7 mol L−1. The thermostability analysis of rTcTI showed that 100% inhibitory activity was retained up to 60 °C and that at 70–80 °C, inhibitory activity remained above 50%. Circular dichroism analysis indicated that the protein is rich in loop structures and β-conformations. Furthermore, in vivo assays against Helicoverpa armigera larvae were also performed with rTcTI in 0.1 mg mL−1 spray solutions on leaf surfaces, which reduced larval growth by 70% compared to the control treatment. Trials with cocoa plants infected with Mp showed a greater accumulation of TcTI in resistant varieties of T. cacao, so this regulation may be associated with different isoforms of TcTI. This inhibitor has biochemical characteristics suitable for biotechnological applications as well as in resistance studies of T. cacao and other crops.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 306
Sónia Rocha ◽  
Natália Aniceto ◽  
Rita C. Guedes ◽  
Hélio M. T. Albuquerque ◽  
Vera L. M. Silva ◽  

Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.

2022 ◽  
Jibin K Varughese ◽  
Kavitha J ◽  
Sindhu K S ◽  
Dhiya Francis ◽  
Joseph Libin K L ◽  

Abstract The alarming increase in COVID-19 cases and deaths calls for an urgent cost-effective pharmacological approach. Here, we examine the inhibitory activity of a group of dietary bioactive flavonoids against the human protease TMPRSS2, which plays a major role in SARS CoV-2 viral entry. After the molecular docking studies of a large number of flavonoids, four compounds with high binding scores were selected and studied in detail. The binding affinities of these four ligands, Amentoflavone, Narirutin, Eriocitrin, and Naringin, at the active site of TMPRSS2 target were investigated using MD simulations followed by MM-PBSA binding energy calculations. From the studies, a number of significant hydrophobic and hydrogen bonding interactions between the ligands and binding site amino residues of TMPRSS2 are identified which showcase their excellent inhibitory activity against TMPRSS2. Among these ligands, Amentoflavone and Narirutin showed MM-PBSA binding energy values of -155.48 and -138.13 kJ/mol respectively. Our previous studies of the inhibitory activity of these compounds against main protease of SARS-COV2 and the present study on TMPRSS2 strongly highlighted that Amentoflavone and Naringin can exhibit promising multi-target activity against SARS-CoV-2. Moreover, due to their wide availability, no side effects and low cost, these compounds could be recommended as dietary supplements for COVID patients or for the development of SARS-CoV-2 treatments.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 480
Ziad Omran

Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.

Sign in / Sign up

Export Citation Format

Share Document