kinetic characterization
Recently Published Documents


TOTAL DOCUMENTS

1140
(FIVE YEARS 93)

H-INDEX

65
(FIVE YEARS 4)

Author(s):  
Ke Sherry Li ◽  
John G. Quinn ◽  
Matthew J. Saabye ◽  
Jesus F. Salcido Guerrero ◽  
Jim Nonomiya ◽  
...  

2021 ◽  
Author(s):  
Keely E.A Oldham ◽  
Erica J Prentice ◽  
Emma L Summers ◽  
Joanna L Hicks

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize L-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates L‑serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of L-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, L-malate (present in the crystallization screen) to 2.01 Å and with the natural substrate L-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel β-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail.  L‑malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of L-cysteine with substrates L-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by L-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial-resistant N. gonorrhoeae.


ACS Catalysis ◽  
2021 ◽  
pp. 11685-11695
Author(s):  
Lukas Rieder ◽  
Dejan Petrović ◽  
Priit Väljamäe ◽  
Vincent G.H. Eijsink ◽  
Morten Sørlie

2021 ◽  
Vol 118 (36) ◽  
pp. e2105548118
Author(s):  
Aitor Franco ◽  
Pablo Gracia ◽  
Adai Colom ◽  
José D. Camino ◽  
José Ángel Fernández-Higuero ◽  
...  

α-synuclein aggregation is present in Parkinson’s disease and other neuropathologies. Among the assemblies that populate the amyloid formation process, oligomers and short fibrils are the most cytotoxic. The human Hsc70-based disaggregase system can resolve α-synuclein fibrils, but its ability to target other toxic assemblies has not been studied. Here, we show that this chaperone system preferentially disaggregates toxic oligomers and short fibrils, while its activity against large, less toxic amyloids is severely impaired. Biochemical and kinetic characterization of the disassembly process reveals that this behavior is the result of an all-or-none abrupt solubilization of individual aggregates. High-speed atomic force microscopy explicitly shows that disassembly starts with the destabilization of the tips and rapidly progresses to completion through protofilament unzipping and depolymerization without accumulation of harmful oligomeric intermediates. Our data provide molecular insights into the selective processing of toxic amyloids, which is critical to identify potential therapeutic targets against increasingly prevalent neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document