Comment on minimum-time orbital rendezvous between neighboring elliptic orbits

1971 ◽  
Vol 7 (4) ◽  
pp. 319-320
Author(s):  
B. Paiewonsky ◽  
P. Woodrow
2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Gang Zhang ◽  
Dongzhe Wang ◽  
Xibin Cao ◽  
Zhaowei Sun

The tangent-impulse coplanar orbit rendezvous problem is studied based on the linear relative motion forJ2-perturbed elliptic orbits. There are three cases: (1) only the first impulse is tangent; (2) only the second impulse is tangent; (3) both impulses are tangent. For a given initial impulse point, the first two problems can be transformed into finding all roots of a single variable function about the transfer time, which can be done by the secant method. The bitangent rendezvous problem requires the same solution for the first two problems. By considering the initial coasting time, the bitangent rendezvous solution is obtained with a difference function. A numerical example for two coplanar elliptic orbits withJ2perturbations is given to verify the efficiency of these proposed techniques.


2020 ◽  
Vol 4 (02) ◽  
pp. 34-45
Author(s):  
Naufal Dzikri Afifi ◽  
Ika Arum Puspita ◽  
Mohammad Deni Akbar

Shift to The Front II Komplek Sukamukti Banjaran Project is one of the projects implemented by one of the companies engaged in telecommunications. In its implementation, each project including Shift to The Front II Komplek Sukamukti Banjaran has a time limit specified in the contract. Project scheduling is an important role in predicting both the cost and time in a project. Every project should be able to complete the project before or just in the time specified in the contract. Delay in a project can be anticipated by accelerating the duration of completion by using the crashing method with the application of linear programming. Linear programming will help iteration in the calculation of crashing because if linear programming not used, iteration will be repeated. The objective function in this scheduling is to minimize the cost. This study aims to find a trade-off between the costs and the minimum time expected to complete this project. The acceleration of the duration of this study was carried out using the addition of 4 hours of overtime work, 3 hours of overtime work, 2 hours of overtime work, and 1 hour of overtime work. The normal time for this project is 35 days with a service fee of Rp. 52,335,690. From the results of the crashing analysis, the alternative chosen is to add 1 hour of overtime to 34 days with a total service cost of Rp. 52,375,492. This acceleration will affect the entire project because there are 33 different locations worked on Shift to The Front II and if all these locations can be accelerated then the duration of completion of the entire project will be effective


2000 ◽  
Author(s):  
Noboru Takeichi ◽  
M. Natori ◽  
Nobukatsu Okuizumi ◽  
Ken Higuchi

Sign in / Sign up

Export Citation Format

Share Document