On necessary optimality conditions in vector optimization problems

1988 ◽  
Vol 58 (1) ◽  
pp. 63-81 ◽  
Author(s):  
P. Q. Khanh ◽  
T. H. Nuong
2017 ◽  
Vol 9 (4) ◽  
pp. 168
Author(s):  
Giorgio Giorgi

We take into condideration necessary optimality conditions of minimum principle-type, that is for optimization problems having, besides the usual inequality and/or equality constraints, a set constraint. The first part pf the paper is concerned with scalar optimization problems; the second part of the paper deals with vector optimization problems.


2003 ◽  
Vol 8 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Davide La Torre

In this paper we introduce a notion of generalized derivative for nonsmooth vector functions in order to obtain necessary optimality conditions for vector optimization problems. This definition generalizes to the vector case the notion introduced by Michel and Penot and extended by Yang and Jeyakumar. This generalized derivative is contained in the Clarke subdifferential and then the corresponding optimality conditions are sharper than the Clarke's ones.


2018 ◽  
Vol 52 (2) ◽  
pp. 567-575 ◽  
Author(s):  
Do Sang Kim ◽  
Nguyen Van Tuyen

The aim of this note is to present some second-order Karush–Kuhn–Tucker necessary optimality conditions for vector optimization problems, which modify the incorrect result in ((10), Thm. 3.2).


2019 ◽  
Vol 24 ◽  
pp. 01002 ◽  
Author(s):  
Najeeb Abdulaleem

In this paper, a new concept of generalized convexity is introduced for not necessarily differentiable vector optimization problems. For an E-differentiable function, the concept of E-invexity is introduced as a generalization of the E-differentiable E-convexity notion. In addition, some properties of E-differentiable E-invex functions are investigated. Furthermore, the so-called E-Karush-Kuhn-Tucker necessary optimality conditions are established for the considered E-differentiable vector optimization problems with both inequality and equality constraints. Also, the sufficiency of the E-Karush-Kuhn-Tucker necessary optimality conditions are proved for such E-differentiable vector optimization problems in which the involved functions are E-invex and/or generalized E-invex.


Sign in / Sign up

Export Citation Format

Share Document