Relativistic form factor in terms of wave functions of composite systems at rest

1989 ◽  
Vol 78 (2) ◽  
pp. 162-167
Author(s):  
A. N. Kvinikhidze ◽  
B. A. Magradze ◽  
A. M. Khvedelidze
2011 ◽  
Vol 83 (5) ◽  
Author(s):  
J. P. Palastro ◽  
J. S. Ross ◽  
B. Pollock ◽  
L. Divol ◽  
D. H. Froula ◽  
...  

2010 ◽  
Vol 81 (3) ◽  
Author(s):  
J. P. Palastro ◽  
J. S. Ross ◽  
B. Pollock ◽  
L. Divol ◽  
D. H. Froula ◽  
...  

Author(s):  
Tran Thien Thanh ◽  
Van Tan Phat ◽  
Le Hoang Minh ◽  
Huynh Dinh Chuong ◽  
Vo Hoang Nguyen ◽  
...  

The characteristic parameters of a material relation to photon interactions such as: mass attenuation coefficient, effective atomic number, effective electron density are required to provide essential data in diverse works such as nuclear diagnostic and cancer radiotherapy, industrial irradiation, radiation dosimetry, radiation protection and shielding, analyzing of the concentration of elements and radioactive isotopes. In this paper, the theoretical models such as non-relativistic form factor (NRFF), relativistic form factor  (RFF), and modified form factor (MFF) were used to calculate the ratio Rayleigh-Compton for elements with at gamma energy 59.5 keV. The results showed that there was a discrepancy between the theoretical modes at a high atomic number. The mean value of the Rayleigh-Compton ratio depends on the atomic number, which shows the quadratic function of the correlation coefficient R2 = 0.996 as well. Besides, the experimental system was set-up and measured for some targets such as aluminum, copper, and lead at a scattering angle 150o using 241Am source by Si(Li) detector to confirm the theoretical values. The preliminary result showed that there was a good agreement with experimental and theoretical results is lower than 20%. Further investigation will be measured by the samples for more detailed evaluation.


2015 ◽  
Vol 12 (1) ◽  
pp. 204-209
Author(s):  
Baghdad Science Journal

The division partitioning technique has been used to analyze the four electron systems into six-pairs electronic wave functions for ( for the Beryllium atom in its excited state (1s2 2s 3s ) and like ions ( B+1 ,C+2 ) using Hartree-Fock wave functions . The aim of this work is to study atomic scattering form factor f(s) for and nuclear magnetic shielding constant. The results are obtained numerically by using the computer software (Mathcad).


Sign in / Sign up

Export Citation Format

Share Document