radioactive isotopes
Recently Published Documents


TOTAL DOCUMENTS

1360
(FIVE YEARS 131)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Rinat Lukmanov ◽  
Said Jabri ◽  
Ehab Ibrahim

Abstract The tight gas reservoirs of Haima Supergroup provide the majority of gas production in the Sultanate of Oman. The paper discusses a possibility of using the anomalies from natural radioactivity to evaluate the fracture height for complex tight gas in mature fields of Oman. The standard industry practice is adding radioactive isotopes to the proppant. Spectral Gamma Ray log is used to determine near wellbore traced proppant placement. Spectral Noise log in combination with Production logs helps to identify the active fractures contributing to production. These methods complement each other, but they are obviously associated with costs. Hence, majority of wells are fracced without tracers or any other fracture height diagnostics. However, in several brown fields, an alternative approach to identify fracture height has been developed which provides fit-for-purpose results. It is based on the analysis of naturally occurring radioactive minerals (NORM) precipitation. The anomalies were observed in the many gas reservoirs even in cases when tracers were not used. At certain conditions, these anomalies can be used to characterize fracture propagation and optimize future wells hydraulic Fracture design. A high number of PLTs and well test information were analyzed. Since tight formations normally don't produce without fracturing, radioactive anomalies flag the contributing intervals and hence fracture propagation. The main element of analysis procedure is related to that fact that if no tracers applied, the discrepancy between normalized Open Hole Gamma Ray and Gamma Ray taken during PLT after 6-12 months of production can be used instead to establish fracture height. This method cannot be applied for immediate interpretation of fracture propagation because time is required to precipitate NORM and using the anomalies concept. The advantage of this method is that it can be used in some fields to estimate the frac effectiveness of wells without artificial tracers. It is normally assumed that the Natural radioactivity anomalies appear mainly due to co-production of the formation water. However, in the fields of interest the anomalies appear in wells producing only gas and condensate. This observation provides an opportunity for active fracture height determination at minimum cost.


2022 ◽  
Vol 23 (2) ◽  
pp. 719
Author(s):  
Yeonje Cho ◽  
Armin Mirzapour-Kouhdasht ◽  
Hyosuk Yun ◽  
Jeong Hoon Park ◽  
Hye Jung Min ◽  
...  

Radioactive isotopes are used as drugs or contrast agents in the medical field after being conjugated with chelates such as DOTA, NOTA, DTPA, TETA, CyDTA, TRITA, and DPDP. The N-terminal sequence of human serum albumin (HSA) is known as a metal binding site, such as for Co2+, Cu2+, and Ni2+. For this study, we designed and synthesized wAlb12 peptide from the N-terminal region of HSA, which can bind to cobalt, to develop a peptide-based chelate. The wAlb12 with a random coil structure tightly binds to the Co(II) ion. Moreover, the binding property of wAlb12 toward Co(II) was confirmed using various spectroscopic experiments. To identify the binding site of wAlb12, the analogs were synthesized by alanine scanning mutagenesis. Among them, H3A and Ac-wAlb12 did not bind to Co(II). The analysis of the binding regions confirmed that the His3 and α-amino group of the N-terminal region are important for Co(II) binding. The wAlb12 bound to Co(II) with Kd of 75 μM determined by isothermal titration calorimetry when analyzed by a single-site binding model. For the use of wAlb12 as a chelate in humans, its cytotoxicity and stability were investigated. Trypsin stability showed that the wAlb12 − Co(II) complex was more stable than wAlb12 alone. Furthermore, the cell viability analysis showed wAlb12 and wAlb12 + Co(II) to be non-toxic to the Raw 264.7 and HEK 293T cell lines. Therefore, a hot radioactive isotope such as cobalt-57 will have the same effect as a stable isotope cobalt. Accordingly, we expect wAlb12 to be used as a peptide chelate that binds with radioactive isotopes.


2022 ◽  
Vol 924 (1) ◽  
pp. 10
Author(s):  
Thomas C. L. Trueman ◽  
Benoit Côté ◽  
Andrés Yagüe López ◽  
Jacqueline den Hartogh ◽  
Marco Pignatari ◽  
...  

Abstract Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of 107Pd, 135Cs, and 182Hf, which are produced by slow neutron captures (the s-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using the OMEGA+ galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-life τ of the SLR to the average length of time between the formations of AGB progenitors γ, we calculate timescales relevant for the birth of the Sun. If τ/γ ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted 107Pd/108Pd, 135Cs/133Cs, and 182Hf/180Hf ratios to their respective ESS ratios. The predicted 107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of 107Pd and 108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. If τ/γ ≲ 0.3, we calculate instead the time (T LE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2 M ⊙, Z = 0.01 Monash model we find a self-consistent solution of T LE = 25.5 Myr.


2021 ◽  
Vol 6 (6-1) ◽  
pp. 31-40
Author(s):  
A. A. Bykhovsky ◽  
I. E. Panova ◽  
E. V. Samkovich

This review analyzed the domestic and foreign literature on brachytherapy of choroidal melanoma using ruthenium ophthalmic applicators. The review highlights the historical aspects of radiation treatment, from the first experience of using ionizing radiation in the treatment of malignant neoplasms to modern methods of brachytherapy; presents the radiobiological foundations of radiation therapy; considers the issues of radiation pathomorphosis, reflecting the nature of pathological changes in the choroidal melanoma tissue during brachytherapy; shows the dependence of the effect of exposure ionizing radiation from the phase of the cycle of cell division; and also describes the presence of changes characteristic of the response to ionizing radiation in unirradiated tissues. The analysis of various post-radiation complications, both early and late, was carried out in some detail, with emphasis on the possibility of predicting and preventing them in real clinical practice. A comparison is made in terms of the frequency of development of various post-radiation complications in the works of domestic and foreign authors, as well as a comparison with the effect of ionizing radiation from other radioactive isotopes. Recommendations of experts are given regarding the correct calculation of the dose to the sclera and medication support, based on many years of experience in the use of ruthenium ophthalmic applicators for brachytherapy of choroidal melanoma. The risks of developing such late complications as radiation maculopathy and radiation neuropathy have been demonstrated, especially in pre-equatorial tumor localization. The possibilities of modern methods of instrumental diagnostics for studying the processes occurring in the area of the tumor, as well as changes in the surrounding tissues, are shown, which determines the feasibility and importance of further study of this issue.


2021 ◽  
Vol 923 (1) ◽  
pp. 47
Author(s):  
Hannah E. Brinkman ◽  
J. W. den Hartogh ◽  
C. L. Doherty ◽  
M. Pignatari ◽  
M. Lugaro

Abstract Radioactive nuclei were present in the early solar system (ESS), as inferred from analysis of meteorites. Many are produced in massive stars, either during their lives or their final explosions. In the first paper of this series (Brinkman et al. 2019), we focused on the production of 26Al in massive binaries. Here, we focus on the production of another two short-lived radioactive nuclei, 36Cl and 41Ca, and the comparison to the ESS data. We used the MESA stellar evolution code with an extended nuclear network and computed massive (10–80 M ⊙), rotating (with initial velocities of 150 and 300 km s−1) and nonrotating single stars at solar metallicity (Z = 0.014) up to the onset of core collapse. We present the wind yields for the radioactive isotopes 26Al, 36Cl, and 41Ca, and the stable isotopes 19F and 22Ne. In relation to the stable isotopes, we find that only the most massive models, ≥60 and ≥40 M ⊙ give positive 19F and 22Ne yields, respectively, depending on the initial rotation rate. In relation to the radioactive isotopes, we find that the ESS abundances of 26Al and 41Ca can be matched with by models with initial masses ≥40 M ⊙, while 36Cl is matched only by our most massive models, ≥60 M ⊙. 60Fe is not significantly produced by any wind model, as required by the observations. Therefore, massive star winds are a favored candidate for the origin of the very short-lived 26Al, 36Cl, and 41Ca in the ESS.


2021 ◽  
Vol 3 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
John R Adler

Abstract Each year more than two million patients worldwide are potential candidates for SRS, yet due to the significant costs and complexities of historical delivery systems, only 150,000 patients currently receive such treatment. Japan Shonin-cleared in 2020, ZAP Surgical’s ZAP-X Gyroscopic Radiosurgery platform was designed to solve this challenge, and ultimately bring world-class SRS to more patients in more places. ZAP-X is recognized for being the first and only vault-free SRS delivery system, thereby typically eliminating the need for providers to build costly shielded radiation treatment rooms. Utilizing a modern linear accelerator to produce radiation, ZAP-X is also the first and only dedicated radiosurgery system to no longer require Cobalt-60 radioactive sources, thereby eliminating the significant costs to license, secure and regularly replace live radioactive isotopes. Built on a distinctive dual-gimbaled gantry design, the ZAP-X system uses gyroscopic mobility to direct radiosurgical beams from hundreds of unique angles to precisely concentrate radiation on the tumor target. This pioneering approach supports the clinical objective of protecting healthy brain tissue and patient neuro-cognitive function, as well as enable future potential SRS re-treatments without the unnecessary risks associated with multi-purpose radiation delivery technologies.


2021 ◽  
Vol 927 (1) ◽  
pp. 012034
Author(s):  
I Kambali ◽  
I R Febrianto

Abstract As a beta and positron emitter, copper-64 (Cu-64) has been coined a theranostic agent in nuclear medicine. Copper-64 is generally produced by bombarding a nickel-64 target with a proton beam via 64Ni(p,n)64Cu nuclear reaction. In this work, secondary fast neutrons are proposed to produce Cu-64 radioisotope via 64Zn(n,p)64Cu nuclear reaction. The secondary fast neutrons were produced by a 10 MeV proton-irradiated primary titanium (Ti) target simulated using the PHITS 3.16 code. In the simulation, the Ti target thickness was varied from 0.01 to 0.1 cm to obtain the optimum secondary fast neutron flux, which was calculated in the rear, radial, and front directions. The Cu-64 radioactivity yield was then computed using the TENDL 2019 nuclear cross-section data. Also, the expected radioactive impurities during Cu-64 production were predicted. The simulation results indicated that the total fast neutron flux resulted from the 10-MeV proton bombarded Be target was 1.70x1012 n/cm2s. The maximum integrated Cu-64 radioactivity yield was 2.33 MBq/µAh when 0.03 cm thick Ti target was shot with 10-MeV protons. The most significant impurities predicted during the bombardment were radioactive isotopes e.g., Co-61, and Zn-65, with the total radioactivity yield estimated to be 0.28 Bq/µAh.


Author(s):  
Florin Sloată ◽  
Antoaneta Ene

This paper highlights an experimental model proposed for the management of nuclear materials containing natural uranium and thorium salts, based on technical and legislative methods. The investigated nuclear materials originate from laboratory chemicals with expired validity, having as manufacturers companies specialized in the manufacture of laboratory substances such as: Merck, Chemapol, Sigma Aldrich, Bucharest Reagent. The experimental program refers to several issues of great importance in the waste and environmental management, such as: a) the processing of radioactive substances containing nuclear materials and radioactive waste represented by solid objects contaminated with radionuclides from the radioactive series of U-238 and Th-232; b) gamma dose rate measurement during handling and processing of open sources of ionized radiation; c) measurement of suspicious contamination of the operating personnel which handles the equipment, including the materials used in the processing of open sources of ionizing radiation; and d) the inventory of nuclear materials according to the chemical formula, the mass of chemical substance, the mass of the nuclear element in each container and type of packaging. For the good development of processing these open sources of ionizing radiation containing nuclear materials, the ALARA principle (As Low As Reasonably Achievable) was applied, which is fundamental to the principles of radiation protection. All the measurements for determining the gamma dose rate and suspicious contamination were performed with the aid of a CoMo 170 radiometric device produced by Nuvia Instruments Gmbh Germany, equipped with a 170x100 mm2 PL detector with zinc sulfide calibrated with the aid of C-14, Co-60, Cs-137, U-238 and Am-241 radioactive isotopes and an external probe containing a scintillating crystal with sodium iodide enriched with thallium calibrated with Cs-137.


2021 ◽  
Author(s):  
◽  
Paul Chim Loong

<p>The detection of plasma and liver protein markers for facial eczema resistance or susceptibility in Romney sheep was undertaken. A pooling protocol was used to allow rapid comparison of variation between populations. A 2-D PAGE technigue was developed for protein separation. In general, proteins separated by 2-D PAGE were examined on Coomassie blue or silver stained gels. Greater sensitivity was achieved by labelling proteins with radioactive isotopes. Reductive methylation of the free amino groups of proteins with radioactively labelled formaldehyde and sodium cyanoborohydride was used for isotopic labelling of proteins. A double-labelling technique involving 14C and 3H was used to label plasma or liver proteins from facial eczema resistant and susceptible sheep. The labelled proteins were subsequently separated by 2-D PAGE and detected by autoradiography and fluorography. Any detected variation was further analysed for individuals on one-dimensional polyacrylamide gels which allowed more rapid analysis of multiple samples. No significant difference was detected among the liver proteins of resistant and susceptible sheep. However, among the approximately twenty major plasma protein families visualised on 2-D PAGE gels, significant variation between sheep selected for facial eczema resistance or susceptibility occurred at the transferrin locus. Sheep selected for resistance showed a predominance of acidic transferrins while sheep selected for susceptibility contained a basic transferrin in greater abundance. These results were confirmed and their significance was assessed by transferrin phenotyping on one-dimensional polyacrylamide gels. The transferrin A allele was more abundant in sheep selected for resistance while the transferrin D allele showed a greater association with facial eczema susceptibility. The A allele frequency was 0.57 in resistants and 0.05 in susceptibles while the D allele frequency was 0.18 in resistants and 0.68 in susceptibles. The results suggest some separation of transferrin A and D alleles between the animals selected for resistance and susceptibility. The basis of this variation is unknown. It may reflect either a physiological association of transferrin alleles with a character of importance in facial eczema resistance, or it may be a phenomenon unrelated to facial eczema resistance produced as a result of the way in which the facial eczema resistant and susceptible flocks were generated. It is expected that subsequent genetic studies will show whether transferrin phenotype can be used as a marker to select for facial eczema resistance as a means of controlling the disease.</p>


Sign in / Sign up

Export Citation Format

Share Document