effective atomic number
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 115)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 937
Author(s):  
Thair Hussein Khazaalah ◽  
Iskandar Shahrim Mustafa ◽  
M. I. Sayyed ◽  
Azhar Abdul Rahman ◽  
Mohd Hafiz Mohd Zaid ◽  
...  

In the current study, BaO was doped in Bi2O3-ZnO-B2O3-SLS glass to develop lead-free radiation shielding glasses and to solve the dark brown of bismuth glass. The melt-quenching method was utilized to fabricate (x) BaO (1 − x)[0.3 ZnO 0.2 Bi2O3 0.2 B2O3 0.3 SLS] (where x are 0.01, 0.02, 0.03, 0.04, and 0.05 mol) at 1200 °C. Soda lime silica glass waste (SLS), which is mostly composed of 74.1% SiO2, was used to obtain SiO2. The mass attenuation coefficient (μm) was investigated utilizing X-ray fluorescence (XRF) at 16.61, 17.74, 21.17, and 25.27 keV and narrow beam geometry at 59.54, 662, and 1333 keV. Moreover, the other parameters related to gamma ray shielding properties such as half-value layer (HVL), mean free path (MFP), and effective atomic number (Zeff) were computed depending on μm values. The results indicated that HVL and MFP decreased, whereas μm increased with an increase in BaO concentration. According to these results, it can be concluded that BaO doped in Bi2O3-ZnO-B2O3-SLS glass is a nontoxic, transparent to visible light, and a good shielding material against radiation.


2022 ◽  
Vol 12 (2) ◽  
pp. 798
Author(s):  
Omrane Kadri ◽  
Abdulrahman Alfuraih

Tissue equivalent materials (TEM) are frequently used in research as a means to determine the delivered dose to patients undergoing various therapeutic procedures. They are used in routine quality assurance and quality control procedures in diagnostic and therapeutic physics. However, very few materials that are tissue equivalent have been developed for use in research at the low photon energies involved in diagnosis radiology. The objective of this study is to describe a series of TEMs designed to radiographically imitate human tissue at diagnostic photon energies. TEMs for adipose, cortical bone, fat, lung, and muscle tissues were investigated in terms of energy absorption and exposure buildup factors for photon energy range 15–150 keV and for penetration depths up to 40 mean free path. BUF was computed based on GP-fitting method. Moreover, we also compared some radiological properties, including the total attenuation and the energy-absorption attenuation, the effective atomic number, and the CT number at 30, 100, and 120 kVp. We found that SB3, Glycerol trioleate, and MS15 perfectly mimic cortical bone, fat, and muscle tissues, respectively. Additionally, AP6 and Stracey latex are good TEM for adipose and lung tissues, respectively. The results of this work should be useful in radiation diagnosis and dosimetry applications for the large physician researcher community.


2022 ◽  
Author(s):  
R. El-Mallawany ◽  
Weam aboutaleb ◽  
M.A. Naeem ◽  
S.M. Kotb ◽  
M.E. Krar ◽  
...  

Abstract Borotellurite glasses with a composition [(60-X)TeO2-(20+X)B2O3-10Li2O-10Bi2O3] where x= 5-20 in steps of 5 mol% have been synthesized. Glass density, molar volume, oxygen packing density, and many other physical parameters were measured. UV-spectra in the wave length range (200-800) nm have been measured for the whole glass series. The optical energy band gap Eopt , refractive index, and optical basicity were measured. The mass absorption coefficients (μm) are determined experimentally by the HPGe detector and compared with the theoretical values obtained by XCOM program and MCNP5 simulation code within (0.121–1.408) MeV photon energy range. Half value layer (HVL), effective atomic number and electron density (Zeff and Neff), and macroscopic removal cross-section (∑R) were evaluated. The sample [55TeO2 – 25B2O3 – 10Bi2O3 – 10Li2O] possess the highest values of (μm = 1.192 ± 0.033 cm2/g, Zeff = 56.12 e/atom and ∑ R = 0.101499 cm-1) at energy 121 keV also lower values of (HVL = 0.121 cm, TVL = 0.1 cm and MFP = 0.174 cm) at photon energy 121 keV, therefore this sample considered the best gamma ray shielding material among the prepared glasses.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7878
Author(s):  
Mohamed Elsafi ◽  
Mirvat Fawzi Dib ◽  
Hoda Ezzelddin Mustafa ◽  
M. I. Sayyed ◽  
Mayeen Uddin Khandaker ◽  
...  

We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In order to understand how the introduction of these oxides into red clay influences its attenuation ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using an HPGe detector. The theoretical shielding capability of the material present was obtained using XCOM to verify the accuracy of the experimental results. We found that the experimental and theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the lowest Zeff of the tested samples, which means that introducing any of these three oxides into the clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples. Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation shielding materials.


Author(s):  
Mustafa Mohammad Rafiei ◽  
Sara Parsaei ◽  
Parminder Kaur ◽  
Kanwar J Singh ◽  
Mehmet Büyükyıldız ◽  
...  

Abstract The attenuation coefficients are important input values in estimating not only the dose and exposure in radiotherapy and medical imaging, but also in the proper design of photon shields. While studies are widely available above 1 keV, the attenuation coefficients of human tissues for photon energies less than 1 keV have not been studied yet. In this study, the attenuation coefficients of water and some human tissues were estimated for low energy photons using the MCNP6.1 code in the energy region 0.1 keV-1 keV. Mass attenuation coefficients were estimated at photon energies of 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 and 1000 eV for water and ten human tissues (Soft, Breast, Lung, Bone, Brain, Eye lens, Ovary, Skin, Thyroid and Prostate). Results were compared with those available in literature and a fairly good agreement has been obtained. These data were then used to calculate the mean free path, half value layer, tenth value layer, effective atomic number and specific gamma-ray constant (useful for calculation of dose rate) as well. Moreover, for comparison the effective atomic number of the water has been obtained using the results of this work and using the data available in NIST database from 0.1 to 1 keV. In addition, the human tissues were compared with some tissue equivalent materials in terms of effective atomic number and specific gamma-ray constant to study the tissue equivalency from the results, the muscle-equivalent liquid with sucrose has been found to be the best tissue equivalent material for soft tissue, eye lens and brain with relative difference below 4.1%.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7703
Author(s):  
Ghada ALMisned ◽  
Wiam Elshami ◽  
Shams A.M. Issa ◽  
Gulfem Susoy ◽  
Hesham M.H. Zakaly ◽  
...  

The direct influence of La3+ ions on the gamma-ray shielding properties of cobalt-doped heavy metal borate glasses with the chemical formula 0.3CoO-(80-x)B2O3-19.7PbO-xLa2O3: x = 0, 0.5, 1, 1.5, and 2 mol% was examined herein. Several significant radiation shielding parameters were evaluated. The glass density was increased from 3.11 to 3.36 g/cm3 with increasing La3+ ion content from 0 to 2 mol%. The S5 glass sample, which contained the highest concentration of La3+ ions (2 mol%), had the maximum linear (μ) and mass (μm) attenuation coefficients for all photon energies entering, while the S1 glass sample free of La3+ ions possessed the minimum values of μ and μm. Both the half value layer (T1/2) and tenth value layer (TVL) of all investigated glasses showed a similar trend of (T1/2, TVL)S1 > (T1/2, TVL)S2 > (T1/2, TVL)S3 > (T1/2, TVL)S4 > (T1/2, TVL)S5. Our results revealed that the S5 sample had the highest effective atomic number (Zeff) values over the whole range of gamma-ray energy. S5 had the lowest exposure (EBF) and energy absorption (EABF) build-up factor values across the whole photon energy and penetration depth range. Our findings give a strong indication of the S5 sample’s superior gamma-ray shielding characteristics due to the highest contribution of lanthanum oxide.


2021 ◽  
Vol 19 (11) ◽  
pp. 15-21
Author(s):  
Ali Adil Turki Aldalawi ◽  
Mohammed Yahya Hadi ◽  
Rawaa A. Hameed

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356, 0.511, 0.662, 0.84, 1.17, 1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI (Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Nonanoic acid its common name Pelargonic acid” it’s chemical formula C9H18O2. The data from the mass attenuation coefficient were then employed to study Zeffective, Neffective, and бtotal of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Zeffective and Neffective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


2021 ◽  
Author(s):  
Uğur Gökmen ◽  
Zübeyde Özkan ◽  
Sema Bilge Ocak

Abstract Gamma-ray and neutron shielding properties of the AA6082 + TiO2 (0-50wt.%) functionally graded composite materials (FGCMs) were investigated using the PSD software. The values of the mean free path (MFP), half-value layer (HVL), linear attenuation coefficients (LAC), mass attenuation coefficient (MAC), tenth-value layer (TVL), exposure buildup factors (EBF), effective atomic number (Zeff), effective conductivity (Ceff), and fast neutron removal cross-sections (FNRC) were found for the energy range between 0.015–15 MeV. The increase in the TiO2 content in the AA6082 composite material has raised the values of MAC and LAC. The calculations for the EBFs were carried out using the G-P fitting method for the energy range between 0.015–15 MeV and penetration depth of up to 40 mfp. The results revealed that HVL values ranged between 0.01-0.116 cm, TVL values ranged between 0.01-0.385 cm, FNRC values ranged between 7.918-10.017 cm-1, and Ceff values ranged between 5.67 x1010 and 9.85x1010 S/m. The AA6082 + TiO2 (50%) composite material was observed to provide the maximum photon and neutron shielding capacity since it offered the highest Zeff, MAC, and FNRC values, and the lowest HVL value. In terms of several aspects, the research is considered original. Besides contributing to several technologies including nanotechnology and space technologies, present research’s results may contribute to nuclear technology.


Sign in / Sign up

Export Citation Format

Share Document