Set of defect values of an entire function of finite order

1988 ◽  
Vol 39 (3) ◽  
pp. 225-228
Author(s):  
A. �. Eremenko
Keyword(s):  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Malyutin KG ◽  
Studenikina IG
Keyword(s):  

Author(s):  
Gary G. Gundersen

SynopsisWe show that if B(z) is either (i) a transcendental entire function with order (B)≠1, or (ii) a polynomial of odd degree, then every solution f≠0 to the equation f″ + e−zf′ + B(z)f = 0 has infinite order. We obtain a partial result in the case when B(z) is an even degree polynomial. Our method of proof and lemmas for case (i) of the above result have independent interest.


2020 ◽  
Vol 20 (3-4) ◽  
pp. 653-665
Author(s):  
J. K. Langley

AbstractSuppose that E is a real entire function of finite order with zeros which are all real but neither bounded above nor bounded below, such that $$E'(z) = \pm 1$$ E ′ ( z ) = ± 1 whenever $$E(z) = 0$$ E ( z ) = 0 . Then either E has an explicit representation in terms of trigonometric functions or the zeros of E have exponent of convergence at least 3. An example constructed via quasiconformal surgery demonstrates the sharpness of this result.


2001 ◽  
Vol 64 (3) ◽  
pp. 377-380 ◽  
Author(s):  
Chung-Chun Yang

In this note, we shall study, via Nevanlinna's value distribution theory, the uniqueness of transcendental entire solutions of the following type of nonlinear differential equation: (*) L (f (z)) – p (z) fn(z) = h (z), where L (f) denotes a linear differential polynomial in f with polynomials as its co-efficients, p (z) a polynomial (≢ 0), h an entire function, and n an integer ≥ 3. We show that if the equation (*) has a finite order transcendental entire solution, then it must be unique, unless L (f) ≡ 0.


2018 ◽  
Vol 40 (1) ◽  
pp. 89-116 ◽  
Author(s):  
WEIWEI CUI

For a transcendental entire function $f$ of finite order in the Eremenko–Lyubich class ${\mathcal{B}}$, we give conditions under which the Lebesgue measure of the escaping set ${\mathcal{I}}(f)$ of $f$ is zero. This complements the recent work of Aspenberg and Bergweiler [Math. Ann. 352(1) (2012), 27–54], in which they give conditions on entire functions in the same class with escaping sets of positive Lebesgue measure. We will construct an entire function in the Eremenko–Lyubich class to show that the condition given by Aspenberg and Bergweiler is essentially sharp. Furthermore, we adapt our idea of proof to certain infinite-order entire functions. Under some restrictions to the growth of these entire functions, we show that the escaping sets have zero Lebesgue measure. This generalizes a result of Eremenko and Lyubich.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
BaoQin Chen ◽  
Sheng Li

Abstract This paper is to consider the unity results on entire functions sharing two values with their difference operators and to prove some results related to 4 CM theorem. The main result reads as follows: Let $f(z)$ f ( z ) be a nonconstant entire function of finite order, and let $a_{1}$ a 1 , $a_{2}$ a 2 be two distinct finite complex constants. If $f(z)$ f ( z ) and $\Delta _{\eta }^{n}f(z)$ Δ η n f ( z ) share $a_{1}$ a 1 and $a_{2}$ a 2 “CM”, then $f(z)\equiv \Delta _{\eta }^{n} f(z)$ f ( z ) ≡ Δ η n f ( z ) , and hence $f(z)$ f ( z ) and $\Delta _{\eta }^{n}f(z)$ Δ η n f ( z ) share $a_{1}$ a 1 and $a_{2}$ a 2 CM.


Sign in / Sign up

Export Citation Format

Share Document