Stimulated emission of a laser photon by the excited states of a three-level atom

1996 ◽  
Vol 62 (6) ◽  
pp. 547-555
Author(s):  
C. Mavroyannis

1992 ◽  
Vol 70 (6) ◽  
pp. 427-431 ◽  
Author(s):  
Constantine Mavroyannis

We have considered the induced processes that occur in a driven two-level atom, where a laser photon is absorbed and emitted by the ground and by the excited states of the atom, respectively. In the low-intensity limit of the laser field, the induced spectra arising when a laser photon is absorbed by the ground state of the atom consist of two peaks describing induced-absorption and stimulated-emission processes, respectively, where the former prevails over the latter. Asymmetry of the spectral lines occurs at off-resonance and its extent depends on the detuning of the laser field. The physical, process where a laser photon is emitted by the excited state is the reverse of that arising from the absorption of a laser photon by the ground state of the atom. The former differs from the latter in that the emission of a laser photon by the excited state occurs in the low-frequency regime and that the stimulated-emission process prevails over that of the induced absorption. In this case, amplification of ultrashort pulses is likely to occur without the need of population inversion between the optical transitions. The computed spectra are graphically presented and discussed.



1971 ◽  
Vol 42 (12) ◽  
pp. 5066-5071 ◽  
Author(s):  
Takenari Goto ◽  
Dietrich W. Langer






2002 ◽  
Vol 366 (3-4) ◽  
pp. 398-405 ◽  
Author(s):  
R.J Marsh ◽  
D.A Armoogum ◽  
A.J Bain


1990 ◽  
Vol 68 (12) ◽  
pp. 1389-1395 ◽  
Author(s):  
Constantine Mavroyannis

We have considered the interference spectra arising from the competition between a spontaneous process and one induced by a laser field in a two-level atom. Expressions for the spectral functions have been derived describing the spectra of the excited and ground states of the atom in the low- and high-intensity limit of the laser field. For the excited-state spectra in the low-intensity limit, the frequency profiles of the two peaks, which arise from the spontaneous and the induced processes, cancel each other out completely near the center of the line, while for the ground state the induced process dominates. For finite values of the detuning, the spectra of the excited state consist of two peaks, which have positive and negative frequency profiles, respectively. The computed spectra have been graphically presented and discussed. In the high-intensity limit, the dynamic Stark effect dominates the spectra of the excited and ground states of the atom. Expressions for the correlation functions have been derived that describe the emission or the absorption of a laser photon at two different times. The derived expressions for the corresponding delay functions in the low- and high-intensity limits have been found to be identical to those recently proposed in the literature. The laser field has been treated as a classical as well as a quantized entity.





Author(s):  
Neil Reilly ◽  
Michael McCarthy ◽  
Jonathan Flores ◽  
Kelvin Lee ◽  
Sederra Ross


Sign in / Sign up

Export Citation Format

Share Document