ultrashort pulses
Recently Published Documents


TOTAL DOCUMENTS

1282
(FIVE YEARS 180)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 24 (4) ◽  
pp. 46-52
Author(s):  
Anatoly M. Bobreshov ◽  
Aleksey E. Elfimov ◽  
Vladislav A. Stepkin ◽  
Grigoriy K. Uskov

In this work the possibility of increasing the amplitude of ultra-short pulses and formation of a monocycle Gaussian by adding signals from several oscillators was investigated. For this purpose, the ring adders of Wilkinson design were used. The design of which has been chosen due to low losses and high input decoupling. The S-parameters of the adders with different geometrical parameters have been simulated in the frequency band up to 5 GHz. The obtained results coincided with the experimentally measured characteristics. The monopulse amplitude was increased and a bipolar pulse shape was formed by adding ultrashort pulses of equal and different polarities using the adders. This approach allows you to adjust the parameters of the output signal by adjusting the delays of the triggering signals.


Author(s):  
Timo Stolt ◽  
Mikko J. Huttunen

Abstract Frequency conversion of light can be dramatically enhanced using high quality factor (Q-factor) cavities. Unfortunately, the achievable conversion efficiencies and conversion bandwidths are fundamentally limited by the time–bandwidth limit of the cavity, restricting their use in frequency conversion of ultrashort pulses. Here, we propose and numerically demonstrate sum-frequency generation based frequency conversion using a metasurface-based cavity configuration that could overcome this limitation. The proposed experimental configuration takes use of the spatially dispersive responses of periodic metasurfaces supporting collective surface lattice resonances (SLRs), and can be utilized for broadband frequency conversion of ultrashort pulses. We investigate a plasmonic metasurface, supporting a high-Q SLR (Q=500, linewidth of 2 nm) centred near 1000 nm, and demonstrate ~1000-fold enhancements of nonlinear signals. Furthermore, we demonstrate broadband frequency conversion with a pump conversion bandwidth reaching 75 nm, a value that greatly surpasses the linewidth of the studied cavity. Our work opens new avenues to utilize high-Q metasurfaces also for broadband frequency conversion of light.


2022 ◽  
Author(s):  
Ren Bo ◽  
Shi Kai-Zhong ◽  
Shou-Feng Shen ◽  
Wang Guo-Fang ◽  
Peng Jun-Da ◽  
...  

Abstract In this paper, we investigate the third-order nonlinear Schr\"{o}dinger equation which is used to describe the propagation of ultrashort pulses in the subpicosecond or femtosecond regime. Based on the independent transformation, the bilinear form of the third-order NLSE is constructed. The multiple soliton solutions are constructed by solving the bilinear form. The multi-order rogue waves and interaction between one-soliton and first-order rogue wave are obtained by the long wave limit in multi-solitons. The dynamics of the first-order rogue wave, second-order rogue wave and interaction between one-soliton and first-order rogue wave are presented by selecting the appropriate parameters. In particular parameters, the positions and the maximum of amplitude of rogue wave can be confirmed by the detail calculations.PACS numbers: 02.30.Ik, 05.45.Yv.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jinwei Zhang ◽  
Markus Pӧtzlberger ◽  
Qing Wang ◽  
Jonathan Brons ◽  
Marcus Seidel ◽  
...  

Ultrafast laser oscillators are indispensable tools for diverse applications in scientific research and industry. When the phases of the longitudinal laser cavity modes are locked, pulses as short as a few femtoseconds can be generated. As most high-power oscillators are based on narrow-bandwidth materials, the achievable duration for high-power output is usually limited. Here, we present a distributed Kerr lens mode-locked Yb:YAG thin-disk oscillator which generates sub-50 fs pulses with spectral widths far broader than the emission bandwidth of the gain medium at full width at half maximum. Simulations were also carried out, indicating good qualitative agreement with the experimental results. Our proof-of-concept study shows that this new mode-locking technique is pulse energy and average power scalable and applicable to other types of gain media, which may lead to new records in the generation of ultrashort pulses.


2021 ◽  
Vol 23 (1) ◽  
pp. 163
Author(s):  
Dmitry Makarov ◽  
Anastasia Kharlamova

The scattering of X-ray ultrashort pulses (USPs) is an important aspect of the diffraction analysis of matter using modern USP sources. The theoretical basis, which considers the specifics of the interaction of ultrashort pulses with complex polyatomic structures, is currently not well developed. In general, research is focused on the specifics of the interaction of ultrashort pulses with simple systems—these are atoms and simple molecules. In this work, a theory of scattering of X-ray ultrashort pulses by complex polyatomic structures is developed, considering the specifics of the interaction of ultrashort pulses with such a substance. The obtained expressions have a rather simple analytical form, which allows them to be used in diffraction analysis. As an example, it is shown that the obtained expressions can be used to study the structures of deoxyribonucleic (DNA) and ribonucleic (RNA) acids.


2021 ◽  
Author(s):  
Yali Zheng ◽  
Xunming Cai ◽  
Xin Zhao ◽  
Wei Wang
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8473
Author(s):  
Luke Horstman ◽  
Jean-Claude Diels

A method to increase the sensitivity of an intracavity differential phase measurement that is not made irrelevant by a larger increase of noise is explored. By introducing a phase velocity feedback by way of a resonant dispersive element in an active sensor in which two ultrashort pulses circulate, it is shown that the measurement sensitivity is elevated without significantly increasing the Petermann excess noise factor. This enhancement technique has considerable implications for any optical phase based measurement; from gyroscopes and accelerometers to magnetometers and optical index measurements. Here we describe the enhancement method in the context of past dispersion enhancement studies including the recent work surrounding non-Hermitian quantum mechanics, justify the method with a theoretical framework (including numerical simulations), and propose practical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vasilii Voropaev ◽  
Daniil Batov ◽  
Andrey Voronets ◽  
Dmitrii Vlasov ◽  
Rana Jafari ◽  
...  

AbstractThe duration reduction and the peak power increase of ultrashort pulses generated by all-fiber sources at a wavelength of $$1.9\,\upmu \hbox {m}$$ 1.9 μ m are urgent tasks. Finding an effective and easy way to improve these characteristics of ultrafast lasers can allow a broad implementation of wideband coherent supercontinuum sources in the mid-IR range required for various applications. As an alternative approach to sub-100 fs pulse generation, we present an ultrafast all-fiber amplifier based on a normal-dispersion germanosilicate thulium-doped active fiber and a large-mode-area silica-fiber compressor. The output pulses have the following characteristics: the central wavelength of $$1.9\,\upmu \hbox {m}$$ 1.9 μ m , the repetition rate of 23.8 MHz, the energy per pulse period of 25 nJ, the average power of 600 mW, and a random output polarization. The pulse intensity and phase profiles were measured via the second-harmonic-generation frequency-resolved optical gating technique for a linearly polarized pulse. The linearly polarized pulse has a duration of 71 fs and a peak power of 128.7 kW. The maximum estimated peak power for all polarizations is 220 kW. The dynamics of ultrashort-pulse propagation in the amplifier were analyzed using numerical simulations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong Mao ◽  
Huaqiang Wang ◽  
Heze Zhang ◽  
Chao Zeng ◽  
Yueqing Du ◽  
...  

AbstractLocking of longitudinal modes in laser cavities is the common path to generate ultrashort pulses. In traditional multi-wavelength mode-locked lasers, the group velocities rely on lasing wavelengths due to the chromatic dispersion, yielding multiple trains of independently evolved pulses. Here, we show that mode-locked solitons at different wavelengths can be synchronized inside the cavity by engineering the intracavity group delay with a programmable pulse shaper. Frequency-resolved measurements fully retrieve the fine temporal structure of pulses, validating the direct generation of synchronized ultrafast lasers from two to five wavelengths with sub-pulse repetition-rate up to ~1.26 THz. Simulation results well reproduce and interpret the key experimental phenomena, and indicate that the saturable absorption effect automatically synchronize multi-wavelength solitons in despite of the small residual group delay difference. These results demonstrate an effective approach to create synchronized complex-structure solitons, and offer an effective platform to study the evolution dynamics of nonlinear wavepackets.


Author(s):  
Emanuele Coccia ◽  
Eleonora Luppi

Abstract High-harmonic generation (HHG) is a nonlinear physical process used for the production of ultrashort pulses in XUV region, which are then used for investigating ultrafast phenomena in time-resolved spectroscopies. Moreover, HHG signal itself encodes information on electronic structure and dynamics of the target, possibly coupled to nuclear degrees of freedom. Investigating HHG signal leads to HHG spectroscopy, which is applied to atoms, molecules, solids and recently also to liquids. Analysing the number of generated harmonics, their intensity and shape gives a detailed insight of, e.g., ionisation and recombination channels occurring in the strong-field dynamics. A number of valuable theoretical models has been developed over the years to explain and interpret HHG features, with the three-step model being the most known one. Originally, these models neglect the complexity of the propagating electronic , by only using an approximated formulation of ground and continuum states. Many effects unravelled by HHG spectroscopy are instead due to electron correlation effects, quantum interference, and Rydberg-state contributions, which are all properly captured by an ab initio electronic-structure approach. In this Review we have collected recent advances in modelling HHG by means of ab initio time-dependent approaches relying on the propagation of the time-dependent Schr\"odinger equation (or derived equations) in presence of a very intense electromagnetic field. We limit ourselves to gas-phase atomic and molecular targets, and to solids. We focus on the various levels of theory for describing the electronic structure of the target, coupled with strong-field dynamics and ionisation approaches, and on the basis used to represent electronic states. Selected applications and perspectives for future developments are also given.


Sign in / Sign up

Export Citation Format

Share Document