The approximate solution of difference equations with polynomial coefficients

1976 ◽  
Vol 27 (6) ◽  
pp. 678-682
Author(s):  
B. M. Mikhailets ◽  
L. I. Savchenko
1982 ◽  
Vol 104 (3) ◽  
pp. 432-437 ◽  
Author(s):  
R. Manohar ◽  
J. W. Stephenson

A new method is proposed for obtaining finite difference equations for the solution of linear partial differential equations. The method is based on representing the approximate solution locally on a mesh element by polynomials which satisfy the differential equation. Then, by collocation, the value of the approximate solution, and its derivatives at the center of the mesh element may be expressed as a linear combination of neighbouring values of the solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Hsuan-Ku Liu

The theory of approximate solution lacks development in the area of nonlinear -difference equations. One of the difficulties in developing a theory of series solutions for the homogeneous equations on time scales is that formulas for multiplication of two -polynomials are not easily found. In this paper, the formula for the multiplication of two -polynomials is presented. By applying the obtained results, we extend the use of the variational iteration method to nonlinear -difference equations. The numerical results reveal that the proposed method is very effective and can be applied to other nonlinear -difference equations.


2017 ◽  
Vol 59 (1) ◽  
pp. 159-168
Author(s):  
Y. Zhang ◽  
Z. Gao ◽  
H. Zhang

AbstractWe study the growth of the transcendental meromorphic solution f(z) of the linear difference equation:where q(z), p0(z), ..., pn-(z) (n ≥ 1) are polynomials such that p0(z)pn(z) ≢ 0, and obtain some necessary conditions guaranteeing that the order of f(z) satisfies σ(f) ≥ 1 using a difference analogue of the Wiman-Valiron theory. Moreover, we give the form of f(z) with two Borel exceptional values when two of p0(z), ..., pn(z) have the maximal degrees.


Author(s):  
Mehmet Sezer ◽  
Mustafa Gülsu

A Taylor matrix method is developed to find an approximate solution of the most general linear Fredholm integrodifferential-difference equations with variable coefficients under the mixed conditions in terms of Taylor polynomials. This method transforms the given general linear Fredholm integrodifferential-difference equations and the mixed conditions to matrix equations with unknown Taylor coefficients. By means of the obtained matrix equations, the Taylor coefficients can be easily computed. Hence, the finite Taylor series approach is obtained. Also, examples are presented and the results are discussed.


Author(s):  
Hassan Hamad AL-Nasrawy ◽  
Abdul Khaleq O. Al-Jubory ◽  
Kasim Abbas Hussaina

In this paper, we study and modify an approximate method as well as a new collocation method, which is based on orthonormal Bernstein polynomials to find approximate solutions of mixed linear delay Fredholm integro-differential-difference equations under the mixed conditions. The main purpose of this paper is to study and develop some approximate methods to solve the mixed linear delay Fredholm integro-differential-difference equations. We employ a new algorithm to find approximate solution via perpendicular Bernstein polynomials on the interval [0,1], and we construct a new matrix of derivatives that will be used to find an approximate solution of matrix equation, that will reduce it to the systems of linear algebraic equations. We study the convergence approximate solutions to the exact solutions. Finally, two examples are given and their results are shown in figures to illustrate the efficiency and accuracy of this method. All the computations are implemented using Math14.


Sign in / Sign up

Export Citation Format

Share Document