Irreducible complex representations of finitely generated nilpotent groups

1978 ◽  
Vol 29 (4) ◽  
pp. 331-337
Author(s):  
S. D. Berman ◽  
V. V. Sharaya
2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


Author(s):  
E. Raptis ◽  
D. Varsos

AbstractWe study the residual finiteness of free products with amalgamations and HNN-extensions of finitely generated nilpotent groups. We give a characterization in terms of certain conditions satisfied by the associated subgroups. In particular the residual finiteness of these groups implies the possibility of extending the isomorphism of the associated subgroups to an isomorphism of their isolated closures in suitable overgroups of the factors (or the base group in case of HNN-extensions).


2017 ◽  
Vol 58 (3) ◽  
pp. 536-545 ◽  
Author(s):  
V. A. Roman’kov ◽  
N. G. Khisamiev ◽  
A. A. Konyrkhanova

2006 ◽  
Vol 13 (02) ◽  
pp. 289-294 ◽  
Author(s):  
Valerij G. Bardakov

We prove that every free metabelian non-cyclic group has a finitely generated isolated subgroup which is not separable in the class of nilpotent groups. As a corollary, we prove that for every prime number p, an arbitrary free metabelian non-cyclic group has a finitely generated p′-isolated subgroup which is not p-separable.


1992 ◽  
Vol 35 (3) ◽  
pp. 390-399 ◽  
Author(s):  
Goansu Kim ◽  
C. Y. Tang

AbstractIn general polygonal products of finitely generated torsion-free nilpotent groups amalgamating cyclic subgroups need not be residually finite. In this paper we prove that polygonal products of finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups such that the amalgamated cycles generate an isolated subgroup in the vertex group containing them, are residually finite. We also prove that, for finitely generated torsion-free nilpotent groups, if the subgroups generated by the amalgamated cycles have the same nilpotency classes as their respective vertex groups, then their polygonal product is residually finite.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


1979 ◽  
Vol 31 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Albert O. Shar

If (Y, µ) is an H-Space (here all our spaces are assumed to be finitely generated) with homotopy associative multiplication µ. and X is a finite CW complex then [X, Y] has the structure of a nilpotent group. Using this and the relationship between the localizations of nilpotent groups and topological spaces one can demonstrate various properties of [X,Y] (see [1], [2], [6] for example). If µ is not homotopy associative then [X, Y] has the structure of a nilpotent loop [7], [9]. However this algebraic structure is not rich enough to reflect certain significant properties of [X, Y]. Indeed, we will show that there is no theory of localization for nilpotent loops which will correspond to topological localization or will restrict to the localization of nilpotent groups.


2003 ◽  
Vol 46 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Michael J. Puls

AbstractLet G be a finitely generated, infinite group, let p > 1, and let Lp(G) denote the Banach space . In this paper we will study the first cohomology group of G with coefficients in Lp(G), and the first reduced Lp-cohomology space of G. Most of our results will be for a class of groups that contains all finitely generated, infinite nilpotent groups.


Sign in / Sign up

Export Citation Format

Share Document