G�rding domain and entire vectors for inductive limits of commutative locally compact groups

1984 ◽  
Vol 35 (4) ◽  
pp. 366-372 ◽  
Author(s):  
A. V. Kosyak ◽  
Yu. S. Samoilenko
Author(s):  
N. Th. Varopoulos

In this paper we shall be mainly concerned with the following three apparently widely differing questions.(a) What are the possible group topologies on an Abelian group that have a given, fixed continuous character group?In developing our theory, we are very strongly motivated by the duality theory of linear topological spaces and in particular by Mackey's theorem of that theory. This important result gives a complete characterization of all locally convex topologies on a linear space that have a given, fixed, separating dual space. The analogue of Mackey's theorem for groups, together with related results, is examined in sections 1 and 2 of part 2 of the paper.(b) What are the properties of topological groups that are denumerable inductive limits of locally compact groups? (See section 1 of part 1 of the paper for definitions.)Our aim here is to extend results known for locally compact groups to this larger class of groups. The topological study of these groups is carried out in section 3 of part 1 of the paper and the really deep results about their characters are proved in section 5 of part 3 of the paper, as applications of the theory developed in that part of the paper, which is a type of harmonic analysis for these groups.(c) What are the properties of certain algebras of measures of a locally compact group G, that strictly contain L1(G), and share most of the pleasing properties of L1(G), that is, they do not have any of the pathological features of the full measure algebra M(G) such as the Wiener–Pitt phenomenon or asymmetry?


2007 ◽  
Vol 89 (3) ◽  
pp. 237-242 ◽  
Author(s):  
F. Abtahi ◽  
R. Nasr-Isfahani ◽  
A. Rejali

Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


2021 ◽  
Vol 390 ◽  
pp. 107894
Author(s):  
Wolfgang Herfort ◽  
Karl H. Hofmann ◽  
Francesco G. Russo

Sign in / Sign up

Export Citation Format

Share Document