Asymptotic properties of the spectrum of a differential operator in a space of vector-valued functions

1971 ◽  
Vol 9 (6) ◽  
pp. 387-392
Author(s):  
R. S. Ismagilov
2018 ◽  
Vol 16 (1) ◽  
pp. 730-739
Author(s):  
Simten Bayrakci

AbstractIn this paper, we consider the square function$$\begin{array}{} \displaystyle (\mathcal{S}f)(x)=\left( \int\limits_{0}^{\infty }|(f\otimes {\it\Phi}_{t})\left( x\right) |^{2}\frac{dt}{t}\right) ^{1/2} \end{array} $$associated with the Bessel differential operator $\begin{array}{} B_{t}=\frac{d^{2}}{dt^{2}}+\frac{(2\alpha+1)}{t}\frac{d}{dt}, \end{array} $α > −1/2, t > 0 on the half-line ℝ+ = [0, ∞). The aim of this paper is to obtain the boundedness of this function in Lp,α, p > 1. Firstly, we proved L2,α-boundedness by means of the Bessel-Plancherel theorem. Then, its weak-type (1, 1) and Lp,α, p > 1 boundedness are proved by taking into account vector-valued functions.


2017 ◽  
Vol 173 (2) ◽  
pp. 357-390 ◽  
Author(s):  
N. Dinh ◽  
M. A. Goberna ◽  
M. A. López ◽  
T. H. Mo

2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


1997 ◽  
Vol 98 (1) ◽  
pp. 189-207 ◽  
Author(s):  
R. DeLaubenfels ◽  
Z. Huang ◽  
S. Wang ◽  
Y. Wang

2014 ◽  
Vol 57 (1) ◽  
pp. 17-82 ◽  
Author(s):  
TUOMAS P. HYTÖNEN ◽  
ANTTI V. VÄHÄKANGAS

AbstractWe extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.


1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].


Sign in / Sign up

Export Citation Format

Share Document