scholarly journals Vector valued Siegel modular forms and their L-functions; Application of a differential operator

1993 ◽  
Vol 19 (2) ◽  
pp. 251-297 ◽  
Author(s):  
Hideshi TAKAYANAGI
2012 ◽  
Vol 12 (3) ◽  
pp. 571-634 ◽  
Author(s):  
Jens Funke ◽  
John Millson

AbstractIn our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.


2016 ◽  
Vol 27 (12) ◽  
pp. 1650101
Author(s):  
Sho Takemori

We prove the explicit structure theorems of modules [Formula: see text] of vector valued Siegel modular forms of degree [Formula: see text], where [Formula: see text] runs over the set of even integers or odd integers. We also check the conjecture given by Ibukiyama [Vector valued Siegel modular forms of symmetric tensor weight of small degrees, Comment. Math. Univ. St. Pauli 61 (2012) 51–75.] for modules of vector valued Siegel modular forms of degree [Formula: see text] of weights [Formula: see text] and [Formula: see text].


2015 ◽  
Vol 26 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Fabien Cléry ◽  
Gerard van der Geer ◽  
Samuel Grushevsky

We study vector-valued Siegel modular forms of genus 2 on the three level 2 groups Γ[2] ◁ Γ1[2] ◁ Γ0[2] ⊂ Sp(4, ℤ). We give generating functions for the dimension of spaces of vector-valued modular forms, construct various vector-valued modular forms by using theta functions and describe the structure of certain modules of vector-valued modular forms over rings of scalar-valued Siegel modular forms.


2014 ◽  
Vol 17 (A) ◽  
pp. 247-256 ◽  
Author(s):  
Sho Takemori

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}A^{0}(\Gamma _{2})$ denote the ring of scalar-valued Siegel modular forms of degree two, level $1$ and even weights. In this paper, we prove the determinant of a basis of the module of vector-valued Siegel modular forms $\bigoplus _{k \equiv \epsilon \ {\rm mod}\ {2}}A_{\det ^{k}\otimes \mathrm{Sym}(j)}(\Gamma _{2})$ over $A^{0}(\Gamma _{2})$ is equal to a power of the cusp form of degree two and weight $35$ up to a constant. Here $j = 4, 6$ and $\epsilon = 0, 1$. The main result in this paper was conjectured by Ibukiyama (Comment. Math. Univ. St. Pauli 61 (2012) 51–75).


1998 ◽  
Vol 09 (04) ◽  
pp. 443-463 ◽  
Author(s):  
WOLFGANG EHOLZER ◽  
TOMOYOSHI IBUKIYAMA

Let ℍn be the Siegel upper half space and let F and G be automorphic forms on ℍn of weights k and l, respectively. We give explicit examples of differential operators D acting on functions on ℍn × ℍn such that the restriction of [Formula: see text] to Z = Z1 = Z2 is again an automorphic form of weight k + l + v on ℍn. Since the elliptic case, i.e. n = 1, has already been studied some time ago by R. Rankin and H. Cohen we call such differential operators Rankin–Cohen type operators. We also discuss a generalisation of Rankin–Cohen type operators to vector valued differential operators.


2017 ◽  
Vol 369 (3-4) ◽  
pp. 1649-1669 ◽  
Author(s):  
Fabien Cléry ◽  
Carel Faber ◽  
Gerard van der Geer

Sign in / Sign up

Export Citation Format

Share Document