A finite-element approach to solving a thermal conductivity problem for thick plates

1993 ◽  
Vol 65 (4) ◽  
pp. 1771-1775
Author(s):  
B. L. Bozhenko
2014 ◽  
Vol 07 (06) ◽  
pp. 1450073 ◽  
Author(s):  
Mir Aijaz ◽  
M. A. Khanday ◽  
Aasma Rafiq

The human head is one of the most sensitive parts of human body due to the fact that it contains brain. Any abnormality in the functioning of brain may disturb the entire system. One of the disturbing factors of brain is thermal stress. Thus, it is imperative to study the effects of thermal stress on human head at various environmental conditions. For the thermoregulation process, the human head is considered to be a structure of four layers viz.; brain, cerebrospinal fluid (CSF), skull and scalp. A mathematical model has been formulated to estimate the variation of temperature at these layers. The model is based on radial form of bio-heat equation with the appropriate boundary conditions and has been solved by variational finite element method. The rate of metabolic heat generation and thermal conductivity in this study have been assumed to be heterogeneous. The results were compared with the experimental studies for their coincidence and it has been observed theoretically and experimentally that the human head has greater resistance to compete with the thermal stress up to large extent.


2007 ◽  
Vol 35 (3) ◽  
pp. 165-182 ◽  
Author(s):  
Maik Brinkmeier ◽  
Udo Nackenhorst ◽  
Heiner Volk

Abstract The sound radiating from rolling tires is the most important source of traffic noise in urban regions. In this contribution a detailed finite element approach for the dynamics of tire/road systems is presented with emphasis on rolling noise prediction. The analysis is split into sequential steps, namely, the nonlinear analysis of the stationary rolling problem within an arbitrary Lagrangian Eulerian framework, and a subsequent analysis of the transient dynamic response due to the excitation caused by road surface roughness. Here, a modal superposition approach is employed using complex eigenvalue analysis. Finally, the sound radiation analysis of the rolling tire/road system is performed.


Sign in / Sign up

Export Citation Format

Share Document