road surface roughness
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sasan Adeli ◽  
Vahid Najafi moghaddam Gilani ◽  
Mohammad Kashani Novin ◽  
Ehsan Motesharei ◽  
Reza Salehfard

The main objective of this paper was to investigate the relationship between PCI and IRI values of the rural road network. To this end, 6000 pavement sections of the rural road network in Iran were selected. Road surface images and roughness linear profiles were collected using an automated car to calculate PCI and IRI, respectively. Three exponential regression models were developed and validated in three different IRI intervals. Analysis of the results indicated that exponential regression was the best model to relate IRI and PCI. In these models, R2 values were found to be acceptable, equal to 0.75, 0.76, and 0.59 for roads with good, fair, and very poor qualities, respectively, indicating a good relationship between IRI and PCI. Moreover, validation results showed that the model had a high accuracy. Also, the relation between IRI and PCI became weaker as a result of increasing the level of road surface roughness, which can be caused by the increase in the number and severity of failures. Furthermore, two failures of rail R.C. and rutting were rarely observed in the studied roads. Therefore, the proposed model is more applicable for roads without the mentioned failures and asphalt-pavement rural road network.


Author(s):  
TRAN Huu Nhan

Vehicle dynamics model in type of 1/4 is used for vibration analysis under the effect of random road profile with different grades. The mathematical model to describe the used random road profile is able to change the type of investigated road grades by selecting the corresponding power spectral density parameter of the road grade according to the ISO 8608 standard. Random road profile is ivestigated in the range of frequency domain from 0 to 50 (Hz). The air spring stiffness and the damping coefficience are determined on the basis of reference to the practical vehicle. The variation of relative displacement amplitude of the suspension in the range of investigation domain is small, the air spring stiffness used in the calculation is constant. The obtained results corresponding to different grades of road surface roughness including displacement and acceleration parameters. Relative displacement is a parameter that aims to verify the ability to ensure safe working of the suspension, namely rattle spacing. Acceleration is used to evaluate the vehicle's comfort. Calculation results are analyzed as the basis for evaluating the influence of the air spring stiffness and road surface conditions on the comfort of the vehicle, as the basis for changing the air spring stiffness in accordance with adjusting the pressure of it according to the type of road profile quality.


2020 ◽  
Vol 12 (24) ◽  
pp. 10536
Author(s):  
Shong-Loong Chen ◽  
Chih-Hsien Lin ◽  
Chao-Wei Tang ◽  
Liang-Pin Chu ◽  
Chiu-Kuei Cheng

The International Roughness Index (IRI) is the standard scale for evaluating road roughness in many countries in the world. The Taipei City government actively promotes a Road Smoothing Project and plans to complete the rehabilitation of the main and minor roads within its jurisdiction. This study aims to detect the road surface roughness in Taipei City and recommend appropriate IRI thresholds for road rehabilitation. A total of 171 asphalt concrete pavement sections in Taipei City with a total length of 803.49 km were analyzed and compared by IRI. The longitudinal profile of the detected road sections was measured using an inertial profiler. The statistical analysis showed that the IRI value prior to road leveling was mainly distributed between 5 and 8 m/km, while the IRI value after road leveling was mainly distributed between 3 and 4.5 m/km. This confirms that the implementation of the Road Smoothing Project has a significant effect on improving road smoothness. Moreover, based on the analysis results, it is recommended that the IRI threshold value for road rehabilitation in Taipei City be set at 4.50 m/km.


Author(s):  
Shong-Loong Chen ◽  
Chih-Hsien Lin ◽  
Chao-Wei Tang ◽  
Liang-Pin Chu ◽  
and Chiu-Kuei Cheng

The International Roughness Index (IRI) is the standard scale for evaluating road roughness in many countries in the world. The Taipei City government actively promotes a Road Smoothing Project and plans to complete the rehabilitation of the main and minor roads within its jurisdiction. This study aims to detect the road surface roughness in Taipei City and recommend appropriate IRI thresholds for road rehabilitation. A total of 171 asphalt concrete pavement sections in Taipei City with a total length of 803.49 km were analyzed and compared by IRI. The longitudinal profile of the detected road sections was measured using an inertial profiler. The statistical analysis showed that the IRI value prior to road leveling was mainly distributed between 5 and 8 m/km, while the IRI value after road leveling was mainly distributed between 3 and 4.5 m/km. This confirms that the implementation of the Road Smoothing Project has a significant effect on improving road smoothness. Moreover, based on the analysis results, it is recommended that the IRI threshold value for road rehabilitation in Taipei City be set at 4.50 m/km.


2020 ◽  
Vol 20 (10) ◽  
pp. 2042006
Author(s):  
Jiantao Li ◽  
Xinqun Zhu ◽  
Siu-Seong Law ◽  
Bijan Samali

Drive-by bridge inspection using acceleration responses of a passing vehicle has great potential for bridge structural health monitoring. It is, however, known that the road surface roughness is a big challenge for the practical application of this indirect approach. This paper presents a new two-step method for the bridge damage identification from only the dynamic responses of a passing vehicle without the road surface roughness information. A state-space equation of the vehicle model is derived based on the Newmark-[Formula: see text] method. In the first step, the road surface roughness is estimated from the dynamic responses of a passing vehicle using the dual Kalman filter (DKF). In the second step, the bridge damage is identified based on the interaction force sensitivity analysis with Tikhonov regularization. A vehicle–bridge interaction model with a wireless monitoring system has been built in the laboratory. Experimental investigation has been carried out for the interaction force and bridge surface roughness identification. Results show that the proposed method is effective and reliable to identify the interaction force and bridge surface roughness. Numerical simulations have also been conducted to study the effectiveness of the proposed method for bridge damage detection. The vehicle is modeled as a 4-degrees-of-freedom half-car and the bridge is modeled as a simply-supported beam. The local bridge damage is simulated as an elemental flexural stiffness reduction. Effects of measurement noise, surface roughness and vehicle speed on the identification are discussed.The results show that the proposed drive-by inspection strategy is efficient and accurate for a quick review on the bridge conditions.


2020 ◽  
Vol 10 (9) ◽  
pp. 3254
Author(s):  
Guichun Wang ◽  
Jie Zhang ◽  
Xuan Kong

Nowadays, the comfort of drivers and passengers is drawing more and more attention. The interaction between vehicles and the asphalt road can cause coupled vibration and reduce the comfort of passengers. Therefore, the research on human–vehicle–road coupled vibration and the comfort of passengers is of great importance. In this paper, the three-dimensional human–bus–road coupled vibration system is established, including the bus model, the parallel biomechanical human model with 2 degrees-of-freedom (DOF), and road surface roughness condition. The proposed coupled model was then used to study the dynamic response of the system and the comfort evaluation of the human body. In the comfort evaluation, the annoyance rate based method was proposed to consider the randomness of passenger vibration, the difference of the psychosensory vibration, and the fuzziness of evaluation indicators. Compared to the fuzzy evaluation based on the ISO 2631 standard, the proposed annoyance rate based method gives a quantitative evaluation of human comfort. Not only the degree of comfort can be evaluated, but the percentage of people feeling uncomfortable can also be obtained. Finally, parametric studies were conducted to investigate the effects of road surface roughness, interlayer bonding condition, bus weight, bus speed, and sitting position. It is found that the road surface roughness has the most significant effect on human comfort.


Sign in / Sign up

Export Citation Format

Share Document