A non-existence theorem for pluriharmonic maps of finite energy

1986 ◽  
Vol 192 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Kensho Takegoshi
2018 ◽  
Vol 15 (01) ◽  
pp. 15-35 ◽  
Author(s):  
Eduard Feireisl ◽  
Elisabetta Rocca ◽  
Giulio Schimperna ◽  
Arghir Zarnescu

We consider a model of liquid crystals, based on a nonlinear hyperbolic system of differential equations, that represents an inviscid version of the model proposed by Qian and Sheng. A new concept of dissipative solution is proposed, for which a global-in-time existence theorem is shown. The dissipative solutions enjoy the following properties: (i) they exist globally in time for any finite energy initial data; (ii) dissipative solutions enjoying certain smoothness are classical solutions; (iii) a dissipative solution coincides with a strong solution originating from the same initial data as long as the latter exists.


Author(s):  
Shengli Xie

AbstractIn this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Baptiste Royer ◽  
Shraddha Singh ◽  
S. M. Girvin
Keyword(s):  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Laura Donnay ◽  
Sabrina Pasterski ◽  
Andrea Puhm

Abstract We provide a unified treatment of conformally soft Goldstone modes which arise when spin-one or spin-two conformal primary wavefunctions become pure gauge for certain integer values of the conformal dimension ∆. This effort lands us at the crossroads of two ongoing debates about what the appropriate conformal basis for celestial CFT is and what the asymptotic symmetry group of Einstein gravity at null infinity should be. Finite energy wavefunctions are captured by the principal continuous series ∆ ∈ 1 + iℝ and form a complete basis. We show that conformal primaries with analytically continued conformal dimension can be understood as certain contour integrals on the principal series. This clarifies how conformally soft Goldstone modes fit in but do not augment this basis. Conformally soft gravitons of dimension two and zero which are related by a shadow transform are shown to generate superrotations and non-meromorphic diffeomorphisms of the celestial sphere which we refer to as shadow superrotations. This dovetails the Virasoro and Diff(S2) asymptotic symmetry proposals and puts on equal footing the discussion of their associated soft charges, which correspond to the stress tensor and its shadow in the two-dimensional celestial CFT.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomoya Miura ◽  
Shun Maeta

Abstract We show that any triharmonic Riemannian submersion from a 3-dimensional space form into a surface is harmonic. This is an affirmative partial answer to the submersion version of the generalized Chen conjecture. Moreover, a non-existence theorem for f -biharmonic Riemannian submersions is also presented.


Sign in / Sign up

Export Citation Format

Share Document