International Mineralogical Association, Commission on New Minerals and Mineral Names: Definition of a mineral

1995 ◽  
Vol 55 (4) ◽  
pp. 323-326 ◽  
Author(s):  
E. H. Nickel
1998 ◽  
Vol 62 (04) ◽  
pp. 533-571 ◽  
Author(s):  
Douglas S. Coombs ◽  
Alberto Alberti ◽  
Thomas Armbruster ◽  
Gilberto Artioli ◽  
Carmine Colella ◽  
...  

Abstract This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in spacegroup symmetry and in order—disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si : Al ratio except for heulandite (Si : Al < 4.0) and clinoptilolite (Si : Al ⩾ 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term ‘ideal formula’ should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, - Na, -K; clinoptilolite-K, -Na, -Ca; dachiardite-Ca, -Na; erionite-Na, -K, -Ca; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.


2016 ◽  
Vol 80 (5) ◽  
pp. 877-880 ◽  
Author(s):  
Olav Revheim ◽  
Vandall T. King

AbstractThe epidote-group nomenclature report by Armbruster et al. (2006) provides a clear and concise definition of the epidote group, and a set of consistent rules and naming conventions for establishing new subgroups and mineral species within what is now the epidote supergroup (Mills et al., 2009). In order to comply with these rules, it was decided to rename the already approved minerals hancockite, niigataite and tweddillite to epidote-(Pb), clinozoisite-(Sr) and manganipiemontite-(Sr), respectively. These names were already well established within the mineral community, and the renaming caused some controversy. Recent International Mineralogical Association guidelines (Hatert et al. 2013) have given priority to the historical provenance of names over nomenclature consistency. Hatert et al. (2013) state as a main principle that "retroactivity will not be applied", but that "Every change in nomenclature has to go through the CNMNC, and is examined on its own merit", thus establishing a mechanism for re-instating historical names on a case by case basis. The CNMNC (Commission on New Minerals, Nomenclature and Classification Committee of the International Mineralogical Association) has therefore decided, as an exception to the main principle, to re-instate hancockite, niigataite and tweddillite. In part to maintain the historical names but, more importantly, re-establish the link between the mineral names and their structural and chemical definitions.


2018 ◽  
Vol 82 (6) ◽  
pp. 1301-1306 ◽  
Author(s):  
Frank C. Hawthorne ◽  
Adam Pieczka

ABSTRACTA classification and nomenclature scheme has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification for the minerals of the graftonite group. The crystal structures of these minerals have three distinct sites that are occupied by Fe2+, Mn2+and Ca2+. These sites have coordination numbers [8], [5] and [6], and these differences lead to very strong order of Fe2+, Mn2+and Ca2+over these sites. As a result of this strong order, the following compositions have been identified as distinct species: graftonite: FeFe2(PO4)2; graftonite-(Ca): CaFe2(PO4)2; graftonite-(Mn): MnFe2(PO4)2; beusite: MnMn2(PO4)2; and beusite-(Ca): CaMn2(PO4)2.


2019 ◽  
Vol 83 (4) ◽  
pp. 587-593
Author(s):  
Roberta Oberti ◽  
Massimo Boiocchi ◽  
Frank C. Hawthorne ◽  
Giancarlo Della Ventura ◽  
Gunnar Färber

AbstractPotassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).


2020 ◽  
pp. 1-4
Author(s):  
Daniel Atencio ◽  
Andrezza de Almeida Azzi

Abstract The cerite supergroup is established and includes the cerite group (silicates) and merrillite group (phosphates). Cerite-group minerals are cerite-(Ce), ferricerite-(La), aluminocerite-(Ce) and taipingite-(Ce). The merrillite group is subdivided into two subgroups: merrillite (merrillite, ferromerrillite, keplerite and matyhite) and whitlockite (whitlockite, strontiowhitlockite, wopmayite and hedegaardite). Cerite-(La) has been renamed ferricerite-(La). The new nomenclature has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.


Sign in / Sign up

Export Citation Format

Share Document