Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

1998 ◽  
Vol 62 (04) ◽  
pp. 533-571 ◽  
Author(s):  
Douglas S. Coombs ◽  
Alberto Alberti ◽  
Thomas Armbruster ◽  
Gilberto Artioli ◽  
Carmine Colella ◽  
...  

Abstract This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in spacegroup symmetry and in order—disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si : Al ratio except for heulandite (Si : Al < 4.0) and clinoptilolite (Si : Al ⩾ 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term ‘ideal formula’ should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, - Na, -K; clinoptilolite-K, -Na, -Ca; dachiardite-Ca, -Na; erionite-Na, -K, -Ca; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and discredited names are listed.

2019 ◽  
Vol 83 (6) ◽  
pp. 829-835 ◽  
Author(s):  
Nadezhda V. Shchipalkina ◽  
Igor V. Pekov ◽  
Nikita V. Chukanov ◽  
Cristian Biagioni ◽  
Marco Pasero

AbstractThis paper presents the nomenclature of the rhodonite group accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA). An overview of the previous studies of triclinic (space group P$\bar{1}$) pyroxenoids belonging to the rhodonite structure type, with a focus on their crystal chemistry, is given. These minerals have the general structural formula VIIM(5)VIM(1)VIM(2)VIM(3)VIM(4)[Si5O15]. The following dominant cations at the M sites are known at present: M(5) = Ca or Mn2+, M(1–3) = Mn2+; and M(4) = Mn2+ or Fe2+. In accordance with the nomenclature, the rhodonite group consists of three IMA-approved mineral species having the following the general chemical formulae: M(5)AM(1–3)B3M(4)C[Si5O15], where A = Ca or Mn2+; B = Mn2+; and C = Mn2+ or Fe2+. The end-member formulae of approved rhodonite-group minerals are as follows: rhodonite CaMn3Mn[Si5O15]; ferrorhodonite CaMn3Fe[Si5O15]; and vittinkiite MnMn3Mn[Si5O15].


2016 ◽  
Vol 80 (5) ◽  
pp. 877-880 ◽  
Author(s):  
Olav Revheim ◽  
Vandall T. King

AbstractThe epidote-group nomenclature report by Armbruster et al. (2006) provides a clear and concise definition of the epidote group, and a set of consistent rules and naming conventions for establishing new subgroups and mineral species within what is now the epidote supergroup (Mills et al., 2009). In order to comply with these rules, it was decided to rename the already approved minerals hancockite, niigataite and tweddillite to epidote-(Pb), clinozoisite-(Sr) and manganipiemontite-(Sr), respectively. These names were already well established within the mineral community, and the renaming caused some controversy. Recent International Mineralogical Association guidelines (Hatert et al. 2013) have given priority to the historical provenance of names over nomenclature consistency. Hatert et al. (2013) state as a main principle that "retroactivity will not be applied", but that "Every change in nomenclature has to go through the CNMNC, and is examined on its own merit", thus establishing a mechanism for re-instating historical names on a case by case basis. The CNMNC (Commission on New Minerals, Nomenclature and Classification Committee of the International Mineralogical Association) has therefore decided, as an exception to the main principle, to re-instate hancockite, niigataite and tweddillite. In part to maintain the historical names but, more importantly, re-establish the link between the mineral names and their structural and chemical definitions.


2010 ◽  
Vol 74 (6) ◽  
pp. 979-990 ◽  
Author(s):  
M. Wierzbicka-Wieczorek ◽  
U. Kolitsch ◽  
L. Nasdala ◽  
E. Tillmanns

AbstractThe new, non-centrosymmetric chain silicate, K2.9Rb0.1ErSi3O9, was prepared by a high-temperature flux-growth technique, and its crystal structure was determined from single-crystal X-ray intensity data (Mo-Kα, 293 K) in space P1, with a = 6.672(1), b = 6.719(1), c = 6.725(1) Å, α = 108.87(3), β = 106.72(3), γ = 107.61(3)°, V = 245.82(6) Å3, Z = 1, R(F) = 2.81%. The compound represents a novel structure type. K2.9Rb0.1ErSi3O9 is characterized by a mixed octahedral-tetrahedral framework, in which each corner of the isolated ErO6 octahedron (<Er—O> = 2.26 Å) is linked to infinite [Si3O9] chains extending approximately along [111]. This connectivity results in a microporous character with two different, narrow channels that extend parallel to [111] and [100] and host K+ cations. The atomic arrangement is strongly pseudorhombohedral. A single-crystal Raman spectrum of K2.9Rb0.1ErSi3O9 is in agreement with the low space-group symmetry. Relations to minerals and synthetic compounds based on [Si3O9] chains are discussed, revealing that the geometry of the chain in K2.9Rb0.1ErSi3O9 is similar to that in pectolite, NaCa2[HSi3O9].


2020 ◽  
Vol 81 (1) ◽  
pp. 3-15
Author(s):  
Vladislav Kostov-Kytin

The crystal-chemical peculiarities of the minerals in the tetrahedrite group are considered as a prerequisite for their role as indicators of the formation environment. Particular attention is paid to the silver-containing representatives because they comprise more than 60% of the Bulgarian tetrahedrites and because the recently adopted by the International Mineralogical Association changes in the nomenclature and classification within this group affect most sensitively them and their relation to a given series, mineral species or variety. The achievements of the Bulgarian mineralogical science in the study of tetrahedrites are briefly presented, and various aspects are considered, illustrating the efforts of the researchers to cover the diversity of these minerals as well as the opportunity to derive from this various crystal-chemical, geochemical and other mineralogical information. In the light of the adopted changes, already published data from 450 electron-probe microanalyses of samples from 45 localities distributed in three metallogenic zones in the country have been processed. The established crystal-chemical trends in the spatial distribution of tetrahedrites in Bulgaria generally confirm and extend the observations of previous researchers. It has been shown that, by their chemical composition, these minerals can be carriers of typomorphic characteristics, both for individual deposits and for metallogenic zones. The information and data provided may serve to: (i) correctly determine the mineral species of the newly investigated tetrahedrites and their affiliation to a given series; (ii) what compositions may be sought or expected according to the location of the investigated localities; (iii) comparing the new results to previous ones to confirm, correct or reject established models and trends.


2021 ◽  
Vol 106 (1) ◽  
pp. 150-153
Author(s):  
Frédéric Hatert ◽  
Stuart J. Mills ◽  
Frank C. Hawthorne ◽  
Mike S. Rumsey

Abstract The classification and nomenclature of mineral species is regulated by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMACNMNC). This mineral species classification is necessary for Earth Sciences, as minerals constitute most planetary and interstellar materials. Hazen (2019) has proposed a classification of minerals and other Earth and planetary materials according to “natural clustering.” Although this classification is complementary to the IMA-CNMNC mineral classification and is described as such, there are some unjustified criticisms and factual errors in the comparison of the two schemes. It is the intent of the present comment to (1) clarify the use of classification schemes for Earth and planetary materials, and (2) counter erroneous criticisms or statements about the current IMA-CNMNC system of approving proposals for new mineral species and classifications.


2018 ◽  
Vol 82 (4) ◽  
pp. 929-937
Author(s):  
Frank C. Hawthorne ◽  
Elena Sokolova ◽  
Atali A. Agakhanov ◽  
Leonid A. Pautov ◽  
Vladimir Yu. Karpenko ◽  
...  

ABSTRACTThe hyalotekite group has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (memorandum 57–SM/16). The general formula of the minerals of the hyalotekite group may be written as: A2B2M2[Si8T4O28]W where A = Ba2+, Pb2+ or K+; B = Ba2+, Pb2+ or K+; M = Ca2+, Y3+ or REE3+; T = Si4+, B3+ or Be2+; and W = F– or □ (where REE = rare-earth elements and □ = vacancy).Four minerals are currently known in this group: hyalotekite, Ba4Ca2[Si8B2(SiB)O28]F, triclinic, I$\bar 1$; khvorovite, Pb2+4Ca2[Si8B2(SiB)O28]F, triclinic I$\bar 1$; kapitsaite-(Y), Ba4(YCa)[Si8B2B2O28]F, triclinic, I$\bar 1$; and itsiite Ba4Ca2[Si8B4O28]□, tetragonal, I$\bar 4$2m.We explore the possible end-member compositions within this group by conflating the properties of an end-member with the stoichiometry imposed by the bond topology of the hyalotekite structure-type and the crystal-chemical properties of its known constituents. There are two high-coordination sites in the hyalotekite structure, A and B, and occupancy of each of these sites can be determined only by crystal-structure refinement. If these two sites are considered together, there are 19 end-member compositions of the triclinic structure and six end-member compositions of the tetragonal structure involving A and B = Ba2+, Pb2+, K+; M = Ca2+, Y3+, REE3+; and T = Si4+, B3+, Be2+. There is the possibility for many other hyalotekite-group minerals, and two potential new minerals have been identified from data in the literature.


2017 ◽  
Vol 81 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Nikita V. Chukanov ◽  
Sergey M. Aksenov ◽  
Ramiza K. Rastsvetaeva ◽  
Christof Schäfer ◽  
Igor V. Pekov ◽  
...  

AbstractEleonorite, ideally Fe63+(PO4)4O(OH)4·6H2O, the analogue of beraunite Fe2+Fe53+(PO4)4O(OH)5·6H2O with Fe2+ completely substituted by Fe3+, has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification as a mineral species (IMA 2015-003). The mineral was first described on material from the Eleonore Iron mine, Dünsberg, near Giessen, Hesse, Germany, but during this study further samples were required and a neotype locality is the Rotläufchen mine, Waldgirmes, Wetzlar, Hesse, Germany, where eleonorite is associated with goethite, rockbridgeite, dufrénite, kidwellite, variscite, matulaite, planerite, cacoxenite, strengite and wavellite. Usually eleonorite occurs as red-brown prismatic crystals up to 0.2 mm × 0.5 mm × 3.5 mm in size and in random or radial aggregates up to 5 mm across encrusting cavities in massive 'limonite'. The mineral is brittle. Its Mohs hardness is 3. Dmeas = 2.92(1), Dcalc = 2.931 g cm–3. The IR spectrum is given. Eleonorite is optically biaxial (+), α = 1.765(4), β = 1.780(5), γ = 1.812(6), 2Vmeas = 75(10)°, 2Vcalc = 70°. The chemical composition (electron microprobe data, H2O analysed by chromatography of products of ignition at 1200°C, wt.%) is: Al2O3 1.03, Mn2O3 0.82, Fe2O3 51.34, P2O5 31.06, H2O 16.4, total 99.58. All iron was determined as being trivalent from a Mössbauer analysis. The empirical formula (based on 27 O apfu) is (Fe5.763+Al0.18Mn0.093+)∑6.03(PO4)3.92O(OH)4.34·5.98H2O. The crystal structure (R = 0.0633) is similar to that of beraunite and is based on a heteropolyhedral framework formed by M(1–4)Ø6-octahedra (where M = Fe3+; Ø = O2–, OH– or H2O) and isolated PO4 tetrahedra, with a wide channel occupied by H2O molecules. Eleonorite is monoclinic, space group C2/c, a = 20.679(10), b = 5.148(2), c = 19.223(9) Å, β = 93.574(9)°, V = 2042.5(16) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d, Å (I,%) (Hkl)] are 10.41 (100) (200), 9.67 (38) (002), 7.30 (29) (202̄), 4.816 (31) (111, 004), 3.432 (18) (600, 114, 404, 313), 3.197 (18) (510, 511̄, 006, 314̄, 602), 3.071 (34) (314, 115̄).


2015 ◽  
Vol 45 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Daniel Atencio

Minerals were seen merely as sources of chemicals: iron ore, copper ore, etc. However, minerals are not just chemicals associations, since they display crystal structures. These two features together provide properties that can be technologically useful. Even though a mineral occurs in very small amount, which does not allow its extraction, it can serve as a model for obtaining the synthetic analogue on an industrial scale. It is necessary that a new-mineral proposal be submitted for approval by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) before publication. Only 65 valid mineral species were first described from Brazil, that is, the type minerals from Brazil. Nineteen of these were published between 1789 and 1959 (0.11 per year). From 1959, when the CNMMN (today CNMNC) - IMA was established, to 2000, 18 approved Brazilian mineral species remain valid (0.43 per year). However, the number of type minerals from Brazil approved in the last 15 years (2000 to 2014) was substantially increased: 28 (1.87 per year). This number is very small considering the wide range of Brazilian geological environments. The two first type species from Brazil, discovered in the 18th century, chrysoberyl and euclase, are important gemological minerals. Two other gem minerals, tourmaline-supergroup members, were published only in the 21st century: uvite and fluor-elbaite. Some type minerals from Brazil are very important technologically speaking. Some examples are menezesite, coutinhoite, lindbergite, pauloabibite, and waimirite-(Y).


Sign in / Sign up

Export Citation Format

Share Document