scholarly journals Laminar boundary-layer separation over a circular cylinder in uniform shear flow

2000 ◽  
Vol 144 (1-2) ◽  
pp. 71-82 ◽  
Author(s):  
T. Wu ◽  
C. -F. Chen
1973 ◽  
Vol 16 (99) ◽  
pp. 1289-1300 ◽  
Author(s):  
Masaru KIYA ◽  
Jun-ichi NISHIYAMA ◽  
Mikio ARIE

1980 ◽  
Vol 47 (2) ◽  
pp. 227-233 ◽  
Author(s):  
M. Kiya ◽  
M. Arie

Main features of the formation of vortex street from free shear layers emanating from two-dimensional bluff bodies placed in uniform shear flow which is a model of a laminar boundary layer along a solid wall. This problem is concerned with the mechanism governing transition induced by small bluff bodies suspended in a laminar boundary layer. Calculations show that the background vorticity of shear flow promotes the rolling up of the vortex sheet of the same sign whereas it decelerates that of the vortex sheet of the opposite sign. The steady configuration of the conventional Karman vortex street is not possible in shear flow. Theoretical vortex patterns are experimentally examined by a flow-visualization technique.


1992 ◽  
Vol 114 (3) ◽  
pp. 457-460 ◽  
Author(s):  
Tae Soon Kwon ◽  
Hyung Jin Sung ◽  
Jae Min Hyun

Extensive laboratory experiments were carried out to investigate the uniform-shear flow approaching a circular cylinder. The aim was to present the Strouhal number (St)- Reynolds number (Re) diagrams over a broad range of the shear parameter K (0 ≤ K ≤ 0.25) and at higher values of Re (600 ≤ Re ≤ 1600). An image processing technique, in conjunction with flow visualization studies, was used to secure more quantitative depictions of vortex shedding from the cylinder. The Strouhal number increases with increasing shear parameter. The drag coefficient decreases with increasing Re; also, Cd decreases as the shear parameter K increases.


Sign in / Sign up

Export Citation Format

Share Document