vortex patterns
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 10 (16) ◽  
pp. 3619
Author(s):  
Jeffrey Shi Kai Chan ◽  
Dawnie Ho Hei Lau ◽  
Yiting Fan ◽  
Alex Pui-Wai Lee

Analysis of the cardiac vortex has been used for a deeper understanding of the pathophysiology in heart diseases. However, physiological changes of the cardiac vortex with normal aging are incompletely defined. Vector flow mapping (VFM) is a novel echocardiographic technique based on Doppler and speckle tracking for analysis of the cardiac vortex. Transthoracic echocardiography and VFM analysis were performed in 100 healthy adults (33 men; age = 18–67 years). The intracardiac flow was assessed throughout the cardiac cycle. The size (cross-sectional area) and circulation (equivalent to the integral of normal component of vorticity) of the largest vortices in systole (S-vortex), early diastole (E-vortex), and late diastole (A-vortex) were measured. Peak energy loss (EL) was calculated from information of the velocity vector of intracardiac flow in systole and diastole. With normal aging, the circulation (p = 0.049) of the E-vortex decreased, while that of the A-vortex increased (both p < 0.001). E-vortex circulation correlated directly to e’ (p = 0.003), A-vortex circulation correlated directly to A and a’ (both p < 0.001), and S-vortex circulation correlated directly to s’ (p = 0.032). Despite changes in vortex patterns, energy loss was not significantly different in older individuals. Normal aging is associated with altered intracardiac vortex patterns throughout the cardiac cycle, with the late-diastolic A-vortex becoming physiologically more dominant. Maintained energy efficiency accompanies changes in vortex patterns in aging hearts.


2021 ◽  
Vol 922 ◽  
Author(s):  
Kerry Hourigan

Fascinating wake vortex patterns emerge when a circular cylinder is forced to vibrate laterally to a uniform fluid flow, deviating from the well-known Kármán vortex street and first reported by Williamson & Roshko (J. Fluids Struct., vol. 2, 1988, pp. 355–381). The two rows of single vortices (2S mode) can suddenly transition to a row of paired vortices and a row of single vortices (P+S mode) as the forcing amplitude is increased. Further increase in amplitude finds another sudden jump back to the 2S mode. Through a series of elegant and carefully crafted numerical simulations, Matharu et al. (J. Fluid Mech., vol. 918, 2021, A42) determine that the transitions occur via bifurcations, but that underlying these observed ‘jumps’, a continuous evolution of the vortex street between the modes is seen along unstable branches connecting the two modes. As the Reynolds number decreases from 100, bistability and the P+S mode are eventually suppressed.


2021 ◽  
Vol 42 (7) ◽  
pp. 1715-1727
Author(s):  
Alexander Mazo ◽  
Valeriy Molochnikov ◽  
Evgeniy Kalinin ◽  
Anton Paereliy ◽  
Nickolay Dushin ◽  
...  

2021 ◽  
pp. 2150299
Author(s):  
Zeyu Guo ◽  
Gucheng Zhu ◽  
Zuogang Chen ◽  
Yukun Feng

To investigate the hydrodynamics of undulatory swimming, a key issue in numerical analysis is to determine the correlation between undulatory locomotion and the flow characteristics. In this study, a novel dynamic-grid generation method, the adaptive control method, is implemented to deal with the moving and morphing boundaries in an unsteady flow field at all Reynolds numbers. This method, based on structured grids, can ensure the orthogonality and absolute controllability of the grids and is performed to precisely simulate the wake and the boundary layer. The NACA0010 wing is employed as a two-dimensional (2D) body model of a fish in the simulations. To maintain the calculation stability, the increase stage of the amplitude is defined as a smooth transitional stage. Analysis of hydrodynamic coefficients reveals that undulation results in a significant increase of frictional force in laminar flow [Formula: see text]. However, the undulation also results in a reduction of the frictional force when the fish swims in turbulent flow [Formula: see text]. The vorticity distribution and the [Formula: see text]-criterion are both used to accurately capture the shedding vortexes in the wake. Furthermore, these vortex pairs have a substantial impact on the turbulence and the wake, in which the turbulent kinetic energy and the turbulent viscosity ratio both decrease at [Formula: see text]. The wake of an undulatory fish presents different vortex patterns with various kinematic parameters. When the phase velocity is greater than the incoming velocity and the wave number is sufficiently large, thrust is yielded, accompanying the distinct reverse Karman Street in the wake.


2021 ◽  
Author(s):  
Daisuke Nakane ◽  
Shoko Odaka ◽  
Kana Suzuki ◽  
Takayuki Nishizaka

A collective motion of self-driven particles has been a fascinating subject in physics and biology. Sophisticated macroscopic behavior emerges through a population in thousands or millions of bacterial cells, propelling itself by flagellar rotation and its chemotactic response. Here we found a series of collective motions accompanying successive phase-transitions in a non-flagellated rod-shaped soil bacterium, Flavobacterium johnsoniae, which was driven by a surface cell movement known as gliding motility. When we spot the cells on an agar plate with a low level of nutrients, the bacterial community exhibited vortex patterns that spontaneously appeared as lattice and integrated into a large-scale circular plate. All patterns exhibit with monolayer of bacteria, which enable to visualize an individual cell with a high resolution among a wide-range pattern two-dimensionally. The single cells moved at random orientation, but the cells connected with one another showed left-turn biased trajectories in starved environment. This feature is possibly due to the collision of cells inducing a nematic alignment of dense cells as self-propelled rods. Subsequently, each vortex oscillated independently, and then transformed to the rotating mode as an independent circular plate. Notably, the rotational direction of the circular plate was counterclockwise without exception. The plates developed accompanying rotation with constant angular velocity, suggesting that the mode is an efficient strategy for bacterial survival. Importance Self-propelled bacteria propelled by flagella rotation often display highly organized dynamic patterns at high cell densities. Here we found a new mode of collective motion in non-flagellated bacteria: vortex patterns were spontaneously appeared as lattice and integrated into a large-scale circular plate comprising hundreds of thousands of cells, which exhibited unidirectional rotation in a counterclockwise manner and expanded in size on agar. A series of collective motions was driven by gliding motility of the rod-shaped soil bacterium Flavobacterium johnsoniae. In a low nutrient environment, single cells moved at random orientation while cells at high density moved together as a unitary cluster. This might be an efficient strategy for cells of this species to find nutrients.


2021 ◽  
Vol 13 ◽  
pp. 175682932110556
Author(s):  
D. Funda Kurtulus

The low Reynolds number aerodynamics is important to investigate for micro air vehicle applications. The current paper covers numerical simulations to present the downstream development of the wake patterns and detailed analysis of the vortices generated at the downstream of NACA 0012 airfoil around the critical angle of attack where the instantaneous vortex patterns are oscillatory and differ from the mean vortex pattern for low Reynolds numbers ranging from 1000 to 4000. The instantaneous and mean aerodynamic forces, pressure and skin friction coefficients, and vorticity values are compared in addition to the path of the vortex centers, their longitudinal and lateral spacings, Kármán spacing ratios, and distortion ratios at the wake of the airfoil in regard to the different Reynolds numbers investigated. The streamwise and crosswise velocities of the vortex cores and relative velocities at different transverse locations are also discussed and presented in detail. The correlations between different non-dimensional numbers (St, Re, Ro) are obtained at these low Reynolds numbers investigated.


Sign in / Sign up

Export Citation Format

Share Document