uniform shear
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 30)

H-INDEX

38
(FIVE YEARS 2)

2021 ◽  
Vol 33 (11) ◽  
pp. 114101
Author(s):  
Shyam Sunder Gopalakrishnan ◽  
Alakesh Chandra Mandal

2021 ◽  
Author(s):  
Justin Michael Brown ◽  
Timour Radko
Keyword(s):  

2021 ◽  
Vol 118 (16) ◽  
pp. e2100227118
Author(s):  
Himangsu Bhaumik ◽  
Giuseppe Foffi ◽  
Srikanth Sastry

Yielding behavior in amorphous solids has been investigated in computer simulations using uniform and cyclic shear deformation. Recent results characterize yielding as a discontinuous transition, with the degree of annealing of glasses being a significant parameter. Under uniform shear, discontinuous changes in stresses at yielding occur in the high annealing regime, separated from the poor annealing regime in which yielding is gradual. In cyclic shear simulations, relatively poorly annealed glasses become progressively better annealed as the yielding point is approached, with a relatively modest but clear discontinuous change at yielding. To understand better the role of annealing on yielding characteristics, we perform athermal quasistatic cyclic shear simulations of glasses prepared with a wide range of annealing in two qualitatively different systems—a model of silica (a network glass) and an atomic binary mixture glass. Two strikingly different regimes of behavior emerge. Energies of poorly annealed samples evolve toward a unique threshold energy as the strain amplitude increases, before yielding takes place. Well-annealed samples, in contrast, show no significant energy change with strain amplitude until they yield, accompanied by discontinuous energy changes that increase with the degree of annealing. Significantly, the threshold energy for both systems corresponds to dynamical cross-over temperatures associated with changes in the character of the energy landscape sampled by glass-forming liquids.


2021 ◽  
Vol 143 ◽  
pp. 106590
Author(s):  
Mohamed A. ElGhoraiby ◽  
Majid T. Manzari

2021 ◽  
Author(s):  
Akash Ganesh ◽  
Romain Rescanieres ◽  
Carine Douarche ◽  
Harold Auradou

<p>We study the shear-induced migration of dilute suspensions of swimming bacteria (modelled as Active elongated Brownian Particles or ABPs) subject to plane Poiseuille flow in a confined channel. By incorporating very simple boundary conditions, we perform numerical simulations of the 3D equations of motion describing the change in position and orientation of the particles. We investigate the effects of confinement, of non-uniform shear and of aspect ratio of the particles on the overall dynamics of the ABPs population.</p><p>We particularly study the coupling between the local shear and the change in the orientation of the particles. We thus perform numerical simulations on both the case where the change in the orientation of the ABPs is purely diffusive (decoupled case) and the case where their orientation is coupled to the shear flow (coupled case). We observe that the decoupled case exhibits a Taylor dispersion <em>i.e.</em>  the effective dispersion coefficient of the ABPs along the direction of the flow is proportional to the square of the imposed shear at all shears. </p><p>However, for all the coupled cases we observe a transition from a Taylor to an active-Taylor regime at a critical shear rate, indicating the effect of shear coupling on the orientation dynamics of the particles. This critical shear rate is directly correlated to the degree of confinement. The change in the dispersion coefficient along the direction of the flow as function of the shear rate is in qualitative agreement with previous studies[1]. </p><p>To further understand these results, we also investigate the change in the dispersion coefficient in the other two directions along with the effect of the shape of the particles. We believe that this study should enhance our understanding of dispersion of bacteria through porous media, on surfaces etc. where shear flows are ubiquitous. </p><p>[1] Sandeep Chilukuri, Cynthia H.Collins, and Patrick T. Underhill. Dispersionof flagellated swimming microorganisms in planar poiseuille flow.Physics offluids, 27, (031902):1 –17, 2015</p>


2021 ◽  
Author(s):  
Mehran Rahmani ◽  
Manan Naik

This report presents a wave method to be used for the structural identification and damage detection of structural components in bridges, e.g., bridge piers. This method has proven to be promising when applied to real structures and large amplitude responses in buildings (e.g., mid-rise and high-rise buildings). This study is the first application of the method to damaged bridge structures. The bridge identification was performed using wave propagation in a simple uniform shear beam model. The method identifies a wave velocity for the structure by fitting an equivalent uniform shear beam model to the impulse response functions of the recorded earthquake response. The structural damage is detected by measuring changes in the identified velocities from one damaging event to another. The method uses the acceleration response recorded in the structure to detect damage. In this study, the acceleration response from a shake-table four-span bridge tested to failure was used. Pairs of sensors were identified to represent a specific wave passage in the bridge. Wave velocities were identified for several sensor pairs and various shaking intensities are reported; further, actual observed damage in the bridge was compared with the detected reductions in the identified velocities. The results show that the identified shear wave velocities presented a decreasing trend as the shaking intensity was increased, and the average percentage reduction in the velocities was consistent with the overall observed damage in the bridge. However, there was no clear correlation between a specific wave passage and the observed reduction in the velocities. This indicates that the uniform shear beam model was too simple to localize the damage in the bridge. Instead, it provides a proxy for the overall extent of change in the response due to damage.


Author(s):  
Zhaoxin Liu ◽  
Zheng Li ◽  
Zheren Cai ◽  
yali qiao ◽  
Yongrui Yang ◽  
...  

The meniscus-guided coating (MGC) is an efficient solution-processing method for preparing organic functional films. However, the uniform shear stress and mass transfer in the liquid meniscus is still challenging for...


2021 ◽  
Vol 249 ◽  
pp. 03021
Author(s):  
Monica Tirapelle ◽  
Andrea C. Santomaso ◽  
Patrick Richard ◽  
Riccardo Artoni

Granular materials can segregate spontaneously due to differences in particle properties when subjected to vibrations, shear strain or because of the equipment geometries. Although the difference in particle size is the most critical factor that drives segregation, the effects of large density difference may also be detrimental for a lot of industries. In this work, we experimentally investigate density-driven segregation in bi-disperse mixtures of particles having the same size but different density when subjected to non-uniform shear rates. We found that the features of the segregation process are related to the density ratio as well as to the dimensionless loaded mass. The experimental outcomes are then compared with the solution of a simple density-driven segregation model. The model can successfully capture the main features of segregation driven by density for a range of density ratios.


Sign in / Sign up

Export Citation Format

Share Document