electromagnetic force
Recently Published Documents


TOTAL DOCUMENTS

1029
(FIVE YEARS 245)

H-INDEX

27
(FIVE YEARS 6)

Author(s):  
Guo Zheng ◽  
Zengqiang Cao ◽  
Minghao Zhang

In this study, a novel method stress wave strengthening (SWS) process based on electromagnetic force was proposed to improve the fatigue life of holed structures. Corresponding tests were carried out to explore the fatigue performance of SWS. Cold expansion (CE) was also investigated for comparison. The fatigue life of SWS and CE samples were evaluated, moreover, the mechanisms of fatigue failures and life enhancements were also discussed. Results showed that double-side SWS extended fatigue life significantly and reduced stiffness degradation more effectively with respect to CE process. Moreover, fatigue cracks commonly appeared at mid-planes of hole surfaces and horizontally grew in SWS samples, which differed a lot from CE samples. Through the residual stress measurement, it is seen that more uniform residual stress along axial direction can be obtained by SWS compared to CE, which can explain the fatigue life enhancement and failure mechanism of SWS method.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hong-Chun Jiang ◽  
Yu-Ling He ◽  
Gui-Ji Tang ◽  
Xing-Hua Yuan

This paper comparatively studies the electromagnetic force and mechanical response of the end winding before and after 3 kinds of typical electromechanical faults in turbo-generator. The analytical expression of electromagnetic force of end winding is derived under the composite fault of static eccentricity and rotor interturn short circuit. Meanwhile, the three-dimensional transient finite element simulation is carried on, and the frequency composition and amplitude variation characteristics of the radial, axial, and tangential electromagnetic force are analyzed for the end windings under static eccentricity, rotor interturn short circuit, and composite fault. Therefore, it provides a reference for the vibration wear detection and electromagnetic force control of the end winding. Moreover, the maximum stress and deformation of different positions on the end involute are obtained. And the three-directional vibration acceleration characteristics of the end winding are further analyzed. Finally, the distribution law of winding fatigue failure and vibration wear is acquired, which lays a foundation for the reverse suppression of end winding fatigue failure and insulation wear.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hong-Chun Jiang ◽  
Yu-Ling He ◽  
Gui-Ji Tang

This paper comparatively studies on the end winding electromagnetic force and mechanical response for generators with different numbers of poles. The analytical expression of the end winding electromagnetic force is derived under the rotor winding interturn short circuit (RISC) considering the pole number. Meanwhile, the three-dimensional transient finite element simulation is carried on two generators with one-pair poles and three-pair poles. Then, the frequency composition and amplitude variation characteristics of the radial, axial, and tangential electromagnetic forces are analyzed. Further, the maximum stress and deformation on the end winding are calculated and the similarity and difference of the coil failure law are obtained for two kinds of generators. It is found that RISC will bring odd harmonics to electromagnetic force for one-pair pole generators but it will bring odd and fraction harmonics for multipair pole generators. Moreover, the max mechanical response under RISC will decrease for one-pair pole generators but it will increase for multipair pole generators.


Author(s):  
Alexandre Furtado Neto

All fundamental Planck scale symmetries are restored on a global level when a new charge is postulated in a finite, closed, Euclidean discrete space. Gravity emerges as a residual effect of the electromagnetic force in this scenario, resulting in a deterministic toy universe driven by a single input parameter. The model is developed using a constructive approach. Randomness is identified using a Chaintin argument. Aleph0 definite value is tied to the size of the universe. This is not an interpretation of Quantum Mechanics, but a deeper attempt to describe nature.


2021 ◽  
Author(s):  
Liming Liu ◽  
Zeli Wang ◽  
Tianyi Zhang ◽  
Xianli Ba

Abstract Triple-wire gas indirect arc welding (TW-GIA) has the advantages of low heat input and high deposition rate. However, the simultaneous melting of triple wires makes the metal transfer mode complicated. The unknown of the metal transfer mode restricts the development of this technology. In this paper, high-speed camera systems and electrical signal acquisition sensors were used to explore the TW-GIA metal transfer mode. The static force model and the arc conductive channel model were used to discuss the droplet force and energy conversion characteristics respectively. Results showed that the TW-GIA metal transfer modes can be divided into: short-circuit transfer (SCT), main wire projected transfer + side wire globular transfer (PGT), main wire streaming transfer + side wire projected transfer (SPT) and main wire streaming transfer + side wire streaming transfer (SST). Moreover, the process parameter ranges corresponding to the four modes were summarized. Due to the stable arc and the uniform metal transfer process, SPT and SST can form desirable weld seam. The gravity and z-axis components of electromagnetic force are the main forces that promote metal transfer. The x-axis and y-axis components of the electromagnetic force deviate the metal transfer path from the arc coverage. Due to the change of arc conductive channel, the energy transferred from TW-GIA to the base metal is less than that of GMAW, showing the advantages of small welding deformation, narrow heat affected zone and grain refinement.


2021 ◽  
Vol 9 (11) ◽  
pp. 235-251
Author(s):  
Y. V. Subba Rao

              The current hypothesis leads to the panspermia origin of life, which is based on the scientific principle of electromagnetic force interaction with matter. Electromagnetic force (Sunlight) interacts with inorganic chemistry available to us given out by the stars in the universe plausibly triggers the formation of extra-terrestrial biological molecules of proto cells under abiotic conditions, as evidenced by their presence in meteorites.' Proto cells’ might theoretically give rise to living organisms with a manifested soul, allowing 'Ribose' to be formed from ice grains hit by sunlight for RNA and DNA at the same time. The presence of life's building blocks and other important organic chemicals like ribose in meteorites, including some microscopic life forms that aren't native to Earth, may have led to the 'Panspermia Origin of Life' and the 'Evolution of Life on Earth' which is evidenced by the definition of 'Meteorites' in Vedic Scriptures, such as the "Bhagavad Gita" (3000 BC) and "Brihat Samhita" (520 AD) that they are the souls of righteous people who have returned to earth to be reborn.


2021 ◽  
Vol 72 (6) ◽  
pp. 366-373
Author(s):  
Steffen Kühn

Abstract The magnetic component of the Lorentz force acts exclusively perpendicular to the direction of motion of a test charge, whereas the electric component does not depend on the velocity of the charge. This article provides experimental indication that, in addition to these two forces, there is a third electromagnetic force that (i) is proportional to the velocity of the test charge and (ii) acts parallel to the direction of motion rather than perpendicular. This force cannot be explained by the Maxwell equations and the Lorentz force, since it is mathematically incompatible with this framework. However, this force is compatible with Weber electrodynamics and Ampère’s original force law, as this older form of electrodynamics not only predicts the existence of such a force but also makes it possible to accurately calculate the strength of this force.


2021 ◽  
Vol 10 (6) ◽  
pp. 3064-3071
Author(s):  
Dzikri Hasbialloh ◽  
Simon Siregar ◽  
Muhammad Ikhsan Sani

Middle-size robot soccer is one of the divisions that competed in national events such as the National Indonesia Robotics Competition and international competitions such as the middle size league (MSL). One of the main components in soccer robots is the kicker system. The kicker system is expected to be high torque, robust, and safe. In this work, a high voltage kicker system is designed and evaluated to substitute ROSTU's previous kicker system. This high voltage solenoid-based kicker system works at 380V and uses the electromagnetic force principle to move a ball. The performance criteria of the kicker system are it can move a ball with a mass of around 1 kg for a minimum range of 3 m and control the charging and discharging process in high voltage conditions. The experiment results show that the kicker system can move a ball with a mass of 1.06 kg, a difference kick distance from 100cm to 350cm, and a monitoring system that can show information about the capacitor voltage and system status.


Sign in / Sign up

Export Citation Format

Share Document