scholarly journals Coarse median algebras: the intrinsic geometry of coarse median spaces and their intervals

2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Graham A. Niblo ◽  
Nick Wright ◽  
Jiawen Zhang

AbstractThis paper establishes a new combinatorial framework for the study of coarse median spaces, bridging the worlds of asymptotic geometry, algebra and combinatorics. We introduce a simple and entirely algebraic notion of coarse median algebra which simultaneously generalises the concepts of bounded geometry coarse median spaces and classical discrete median algebras. We study the coarse median universe from the perspective of intervals, with a particular focus on cardinality as a proxy for distance. In particular we prove that the metric on a quasi-geodesic coarse median space of bounded geometry can be constructed up to quasi-isometry using only the coarse median operator. Finally we develop a concept of rank for coarse median algebras in terms of the geometry of intervals and show that the notion of finite rank coarse median algebra provides a natural higher dimensional analogue of Gromov’s concept of $$\delta $$ δ -hyperbolicity.

2018 ◽  
Vol 6 (1) ◽  
pp. 96-128 ◽  
Author(s):  
Joachim Lohkamp

Abstract We study the intrinsic geometry of area minimizing hypersurfaces from a new point of view by relating this subject to quasiconformal geometry. Namely, for any such hypersurface H we define and construct a so-called S-structure. This new and natural concept reveals some unexpected geometric and analytic properties of H and its singularity set Ʃ. Moreover, it can be used to prove the existence of hyperbolic unfoldings of H\Ʃ. These are canonical conformal deformations of H\Ʃ into complete Gromov hyperbolic spaces of bounded geometry with Gromov boundary homeomorphic to Ʃ. These new concepts and results naturally extend to the larger class of almost minimizers.


2009 ◽  
Vol 2009 ◽  
pp. 1-16
Author(s):  
Paul Bracken

The intrinsic geometry of surfaces and Riemannian spaces will be investigated. It is shown that many nonlinear partial differential equations with physical applications and soliton solutions can be determined from the components of the relevant metric for the space. The manifolds of interest are surfaces and higher-dimensional Riemannian spaces. Methods for specifying integrable evolutions of surfaces by means of these equations will also be presented.


1985 ◽  
Vol 28 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Pui-Fai Leung

Let Mn be an n-dimensional smooth compact Riemannian manifold. By a theorem of Nash, we can think of it as an isometrically immersed submanifold in some higher dimensional Euclidean space ℝn+m. Viewing in this way we can compare the intrinsic geometry of M to its extrinsic geometry. Classically, the Gauss equationwhere K(X,Y) denotes the sectional curvature in M corresponding to the plane spanned by the two orthonormal vectors X, Y and B denotes the second fundamental form gives one of the most important relations between the intrinsic and extrinsic geometries of M. In this note we shall prove the following.


2018 ◽  
Author(s):  
Peter De Wolf ◽  
Zhuangqun Huang ◽  
Bede Pittenger

Abstract Methods are available to measure conductivity, charge, surface potential, carrier density, piezo-electric and other electrical properties with nanometer scale resolution. One of these methods, scanning microwave impedance microscopy (sMIM), has gained interest due to its capability to measure the full impedance (capacitance and resistive part) with high sensitivity and high spatial resolution. This paper introduces a novel data-cube approach that combines sMIM imaging and sMIM point spectroscopy, producing an integrated and complete 3D data set. This approach replaces the subjective approach of guessing locations of interest (for single point spectroscopy) with a big data approach resulting in higher dimensional data that can be sliced along any axis or plane and is conducive to principal component analysis or other machine learning approaches to data reduction. The data-cube approach is also applicable to other AFM-based electrical characterization modes.


2020 ◽  
Vol 9 (10) ◽  
pp. 8545-8557
Author(s):  
K. P. Singh ◽  
T. A. Singh ◽  
M. Daimary
Keyword(s):  

Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


1989 ◽  
Vol 16 (1-4) ◽  
pp. 87-101 ◽  
Author(s):  
A. Janner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document