Duality for the sum of convex functions in general normed spaces

1994 ◽  
Vol 62 (6) ◽  
pp. 554-561 ◽  
Author(s):  
D. Az�
2006 ◽  
Vol 74 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Sever S. Dragomir

New inequalities for the general case of convex functions defined on linear spaces which improve the famous Jensen's inequality are established. Particular instances in the case of normed spaces and for complex and real n-tuples are given. Refinements of Shannon's inequality and the positivity of Kullback-Leibler divergence are obtained.


1999 ◽  
Vol 60 (3) ◽  
pp. 429-458 ◽  
Author(s):  
Robert Wenczel ◽  
Andrew Eberhard

The objectives of this study of slice convergence are two-fold. The first is to derive results regarding the passage of certain semi–convergences through Young–Fenchel conjugation. These semi–convergences arise from the splitting of the usual slice topology in the primal and dual spaces into (non-Hausdorff) topologies: the upper slice topology ; a topology generating a convergence closely resembling the bounded–weak* upper Kuratowski convergence; along with the respective primal and dual lower Kuratowski topologies. This gives rise to topological convergences not reliant on sequentially–based definitions found in many such studies, and associated topological continuity results for conjugation (in normed spaces), in contrast to the usual sequential continuity exhibited by analogues of Mosco convergence. The second objective is to study the passage of slice convergence through addition. Such sum theorems have been derived in other works and we establish previous theorems from a unified framework as well as obtaining a new result.


1993 ◽  
Vol 105 (1) ◽  
pp. 1-11
Author(s):  
Stanisław Kryński

2016 ◽  
Vol 12 (3) ◽  
pp. 4368-4374
Author(s):  
Soo Hwan Kim

In this paper, we extend normed spaces to quasi-normed spaces and prove the generalized Hyers-Ulam stability of a nonic functional equation:$$\aligned&f(x+5y) - 9f(x+4y) + 36f(x+3y) - 84f(x+2y) + 126f(x+y) - 126f(x)\\&\qquad + 84f(x-y)-36f(x-2y)+9f(x-3y)-f(x-4y) = 9 ! f(y),\endaligned$$where $9 ! = 362880$ in quasi-normed spaces.


2013 ◽  
Vol 59 (2) ◽  
pp. 299-320
Author(s):  
M. Eshaghi Gordji ◽  
Y.J. Cho ◽  
H. Khodaei ◽  
M. Ghanifard

Abstract In this paper, we investigate the general solution and the generalized stability for the quartic, cubic and additive functional equation (briefly, QCA-functional equation) for any k∈ℤ-{0,±1} in Menger probabilistic normed spaces.


Sign in / Sign up

Export Citation Format

Share Document