Convergence rates in the law of large numbers for random variables on partially ordered sets

1978 ◽  
Vol 85 (1) ◽  
pp. 53-58 ◽  
Author(s):  
J. H�sler
2013 ◽  
Vol 2013 ◽  
pp. 1-26 ◽  
Author(s):  
Shunli Hao

We study the convergence rates in the law of large numbers for arrays of Banach valued martingale differences. Under a simple moment condition, we show sufficient conditions about the complete convergence for arrays of Banach valued martingale differences; we also give a criterion about the convergence for arrays of Banach valued martingale differences. In the special case where the array of Banach valued martingale differences is the sequence of independent and identically distributed real valued random variables, our result contains the theorems of Hsu-Robbins-Erdös (1947, 1949, and 1950), Spitzer (1956), and Baum and Katz (1965). In the real valued single martingale case, it generalizes the results of Alsmeyer (1990). The consideration of Banach valued martingale arrays (rather than a Banach valued single martingale) makes the results very adapted in the study of weighted sums of identically distributed Banach valued random variables, for which we prove new theorems about the rates of convergence in the law of large numbers. The results are established in a more general setting for sums of infinite many Banach valued martingale differences. The obtained results improve and extend those of Ghosal and Chandra (1998).


Author(s):  
C. C. Heyde ◽  
V. K. Rohatgi

Introduction. Let Xi (i= 1, 2, 3,…) be a sequence of independent and identically distributed random variables with law ℒ(X) and write The Kolmogorov-Marcinkiewicz strong law of large numbers (Loève(6), p. 243) has the following statement:If E|X|r < ∞, then with cr = 0 or EX according as r 1 or r ≥ 1.


Author(s):  
Li Guan ◽  
Jinping Zhang ◽  
Jieming Zhou

This work proposes the concept of uncorrelation for fuzzy random variables, which is weaker than independence. For the sequence of uncorrelated fuzzy variables, weak and strong law of large numbers are studied under the uniform Hausdorff metric d H ∞ . The results generalize the law of large numbers for independent fuzzy random variables.


10.4213/tvp78 ◽  
2007 ◽  
Vol 52 (3) ◽  
pp. 562-587 ◽  
Author(s):  
Jerome Dedecker ◽  
Jerome Dedecker ◽  
Florence Merlevede ◽  
Florence Merlevede

2003 ◽  
Vol 40 (01) ◽  
pp. 226-241 ◽  
Author(s):  
Sunder Sethuraman

Let X 1, X 2, …, X n be a sequence of independent, identically distributed positive integer random variables with distribution function F. Anderson (1970) proved a variant of the law of large numbers by showing that the sample maximum moves asymptotically on two values if and only if F satisfies a ‘clustering’ condition, In this article, we generalize Anderson's result and show that it is robust by proving that, for any r ≥ 0, the sample maximum and other extremes asymptotically cluster on r + 2 values if and only if Together with previous work which considered other asymptotic properties of these sample extremes, a more detailed asymptotic clustering structure for discrete order statistics is presented.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250007
Author(s):  
Si-Li Niu ◽  
Jong-Il Baek

In this paper, we establish one general result on precise asymptotics of weighted sums for i.i.d. random variables. As a corollary, we have the results of Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368], Gut and Spătaru [Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000) 1870–1883; Precise asymptotics in the Baum–Katz and Davis laws of large numbers, J. Math. Anal. Appl. 248 (2000) 233–246], Gut and Steinebach [Convergence rates and precise asymptotics for renewal counting processes and some first passage times, Fields Inst. Comm. 44 (2004) 205–227] and Heyde [A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975) 173–175]. Meanwhile, we provide an answer for the possible conclusion pointed out by Lanzinger and Stadtmüller [Refined Baum–Katz laws for weighted sums of iid random variables, Statist. Probab. Lett. 69 (2004) 357–368].


Sign in / Sign up

Export Citation Format

Share Document