New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces

1990 ◽  
Vol 109 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Zolt�n Sasv�ri
2021 ◽  
Vol 41 (6) ◽  
pp. 747-754
Author(s):  
Zbigniew Burdak ◽  
Marek Kosiek ◽  
Patryk Pagacz ◽  
Krzysztof Rudol ◽  
Marek Słociński

Using the winding of measures on torus in "rational directions" special classes of unitary operators and pairs of isometries are defined. This provides nontrivial examples of generalized powers. Operators related to winding Szegö-singular measures are shown to have specific properties of their invariant subspaces.


1982 ◽  
Vol 34 (4) ◽  
pp. 627-635
Author(s):  
Takahiko NAKAZI

2019 ◽  
Vol 15 (1) ◽  
pp. 122-130
Author(s):  
Laszlo Szekelyhidi ◽  
◽  
Seyyed Mohammad Tabatabaie ◽  
Keyword(s):  

Author(s):  
Heydar Radjavi ◽  
Peter Rosenthal
Keyword(s):  

Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


Sign in / Sign up

Export Citation Format

Share Document