scholarly journals On a functional calculus for unitary operators in Pontryagin spaces

2020 ◽  
pp. 971-999
Author(s):  
Vladimir Strauss
2002 ◽  
Vol 102 (2) ◽  
pp. 215-225
Author(s):  
Teresa Bermύdez ◽  
Manuel González ◽  
Antonio Martinόn

Author(s):  
S. J. Bernau ◽  
F. Smithies

We recall that a bounded linear operator T in a Hilbert space or finite-dimensional unitary space is said to be normal if T commutes with its adjoint operator T*, i.e. TT* = T*T. Most of the proofs given in the literature for the spectral theorem for normal operators, even in the finite-dimensional case, appeal to the corresponding results for Hermitian or unitary operators.


2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


Author(s):  
Ian Doust ◽  
Qiu Bozhou

AbstractWell-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact interval. Depending on the weak compactness of this functional calculus, one obtains one of two types of spectral theorem for these operators. A method is given which enables one to obtain both spectral theorems by simply changing the topology used. Even for the case of well-bounded operators of type (B), the proof given is more elementary than that previously in the literature.


1986 ◽  
Vol 9 (2) ◽  
pp. 218-236 ◽  
Author(s):  
Paul McGuire

2010 ◽  
Vol 362 (1) ◽  
pp. 100-106
Author(s):  
Ian Doust ◽  
Venta Terauds
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document