Finitely presented group whose center is not finitely generated

1974 ◽  
Vol 13 (4) ◽  
pp. 258-264 ◽  
Author(s):  
V. N. Remeslennikov
1998 ◽  
Vol 08 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Susan Garner Garille ◽  
John Meier

Let G be a finitely generated group. The Bieri–Neumann–Strebel invariant Σ1(G) of G determines, among other things, the distribution of finitely generated subgroups N◃G with G/N abelian. This invariant can be quite difficult to compute. Given a finite presentation 〈S:R〉 for G, there is an algorithm, introduced by Brown and extended by Bieri and Strebel, which determines a space Σ(R) that is always contained in, and is sometimes equal to, Σ1(G). We refine this algorithm to one which involves the local structure of the universal cover of the standard 2-complex of a given presentation. Let Ψ(R) denote the space determined by this algorithm. We show that Σ(R) ⊆ Ψ ⊆ Σ1(G) for any finitely presented group G, and if G admits a staggered presentation, then Ψ = Σ1(G). By casting this algorithm in terms of connectivity properties of graphs, it is shown to be computationally feasible.


1992 ◽  
Vol 45 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Ron Hirshon ◽  
David Meier

We prove that given a finitely generated group G with a homomorphism of G onto G × H, H non-trivial, or a finitely generated group G with a homomorphism of G onto G × G, we can always find normal subgroups N ≠ G such that G/N ≅ G/N × H or G/N ≅ G/N × G/N respectively. We also show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group H ⊇ U and a finitely generated free group F such that φ induces a homomorphism of U * F onto (U * F) × H. Together with the results above this allows the construction of many examples of finitely generated groups G with G ≅ G × H where H is finitely presented. A finitely presented group G with a homomorphism of G onto G × G was first constructed by Baumslag and Miller. We use a slight generalisation of their method to obtain more examples of such groups.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850074
Author(s):  
Graham Ellis ◽  
Cédric Fragnaud

The number [Formula: see text] of colorings of a knot [Formula: see text] by a finite quandle [Formula: see text] has been used in the literature to distinguish between knot types. In this paper, we suggest a refinement [Formula: see text] to this knot invariant involving any computable functor [Formula: see text] from finitely presented groups to finitely generated abelian groups. We are mainly interested in the functor [Formula: see text] that sends each finitely presented group [Formula: see text] to its abelianization [Formula: see text]. We describe algorithms needed for computing the refined invariant and illustrate implementations that have been made available as part of the HAP package for the GAP system for computational algebra. We use these implementations to investigate the performance of the refined invariant on prime knots with [Formula: see text] crossings.


Author(s):  
David E. Galewski

0. Introduction. A group π has weak dimension (wd) ≤ n (see Cartan and Ellen-berg (2)) if Hk(π, A) = 0 for all right Z(π)-modules A and all k > n. We say that the weak dimension of a manifold M is ≤ n if wd (πl(M))≤ n. In section 1 we show that open, orientable, irreducible 3-manifolds have wd ≤ 1 if and only if they are the monotone on of 1-handle bodies. In his celebrated theorem (10), Stallings proves that finitely presented groups of cohomological dimensions ≤ 1 are free. In section 2 we prove that if π is a finitely presented group which is the fundamental group of any orientable 3-manifold with wd ≤ 1 then π is free. We also give an example to show that the finite generation of π is necessary. (Swan (11) removes the finitely presented hypothesis from Stalling's theorem.) Finally, in section 3 we generalize a theorem of McMillan (5) and prove that if M is an open, orientable, irreducible 3-manifold with finitely generated fundamental group, then M is stably (taking the product with n ≥ 1 copies of ℝ) a connected sum along the boundary of trivial (n+2)-disc Sl bundles.


2011 ◽  
Vol 54 (2) ◽  
pp. 335-344
Author(s):  
MUSTAFA GÖKHAN BENLI

AbstractIn this paper we look at presentations of subgroups of finitely presented groups with infinite cyclic quotients. We prove that if H is a finitely generated normal subgroup of a finitely presented group G with G/H cyclic, then H has ascending finite endomorphic presentation. It follows that any finitely presented indicable group without free semigroups has the structure of a semidirect product H ⋊ ℤ, where H has finite ascending endomorphic presentation.


1976 ◽  
Vol 20 (1) ◽  
pp. 73-79 ◽  
Author(s):  
M. J. Beetham ◽  
C. M. Campbell

In (8) Todd and Coxeter described an algorithm for enumerating the cosets of a finitely generated subgroup of finite index in a finitely presented group. Several authors ((1), (2), (5), (6), (7)) have discussed a modification of the algorithm to give also a presentation of the subgroup in terms of the given generators.


1974 ◽  
Vol 18 (1) ◽  
pp. 41-53 ◽  
Author(s):  
William W. Boone ◽  
Graham Higman

The following theorem is the focal point of the present paper. It stipulates an algebraic condition equivalent, in any finitely generated group, to the solubility of the word problem.THEOREM I. A necessary and sufficient condition that a finitely generated group G have a soluble word problem is that there exist a simple group H, and a finitely presented group K, such that G is a subgroup of H, and H is a subgroup of K.


2016 ◽  
Vol 26 (03) ◽  
pp. 551-564
Author(s):  
Dessislava H. Kochloukova

We study when an abstract finitely presented group [Formula: see text] of cohomological dimension [Formula: see text] has pro-[Formula: see text] completion [Formula: see text] of cohomological dimension [Formula: see text]. Furthermore, we prove that for a tree hyperbolic limit group [Formula: see text] we have [Formula: see text] and show an example of a hyperbolic limit group [Formula: see text] that is not free and [Formula: see text] is free pro-[Formula: see text]. For a finitely generated residually free group [Formula: see text] that is not a limit group, we show that [Formula: see text] is not free pro-[Formula: see text].


2006 ◽  
Vol 16 (01) ◽  
pp. 35-90 ◽  
Author(s):  
JEAN-CAMILLE BIRGET

We construct a finitely presented group with coNP-complete word problem, and a finitely generated simple group with coNP-complete word problem. These groups are represented as Thompson groups, hence as partial transformation groups of strings. The proof provides a simulation of combinational circuits by elements of the Thompson–Higman group G3,1.


Sign in / Sign up

Export Citation Format

Share Document