algebraic characterization
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 14 (1) ◽  
pp. 1-54
Author(s):  
Victor Lagerkvist ◽  
Magnus Wahlström

We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the context of the strong exponential-time hypothesis (SETH) , showing non-trivial lower and upper bounds on the running time. Here, by a non-trivial lower bound for a problem SAT (Γ) (respectively CSP (Γ)) with constraint language Γ, we mean a value c 0 > 1 such that the problem cannot be solved in time O ( c n ) for any c < c 0 unless SETH is false, while a non-trivial upper bound is simply an algorithm for the problem running in time O ( c n ) for some c < 2. Such lower bounds have proven extremely elusive, and except for cases where c 0 =2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near unanimity operations and edge operations . Using this connection we construct improved algorithms for several interesting classes of sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it admits a non-trivial partial invariant of the above form.


Author(s):  
Tuan Quoc Nguyen ◽  
Katsumi Inoue ◽  
Chiaki Sakama

AbstractAlgebraic characterization of logic programs has received increasing attention in recent years. Researchers attempt to exploit connections between linear algebraic computation and symbolic computation to perform logical inference in large-scale knowledge bases. In this paper, we analyze the complexity of the linear algebraic methods for logic programs and propose further improvement by using sparse matrices to embed logic programs in vector spaces. We show its great power of computation in reaching the fixed point of the immediate consequence operator. In particular, performance for computing the least models of definite programs is dramatically improved using the sparse matrix representation. We also apply the method to the computation of stable models of normal programs, in which the guesses are associated with initial matrices, and verify its effect when there are small numbers of negation. These results show good enhancement in terms of performance for computing consequences of programs and depict the potential power of tensorized logic programs.


Author(s):  
Harald Günzel ◽  
Daniel Hernández Escobar ◽  
Jan-J. Rückmann

AbstractIn this paper we study the class of mathematical programs with complementarity constraints MPCC. Under the Linear Independence constraint qualification MPCC-LICQ we state a topological as well as an equivalent algebraic characterization for the strong stability (in the sense of Kojima) of an M-stationary point for MPCC. By allowing perturbations of the describing functions up to second order, the concept of strong stability refers here to the local existence and uniqueness of an M-stationary point for any sufficiently small perturbed problem where this unique solution depends continuously on the perturbation. Finally, some relations to S- and C-stationarity are briefly discussed.


2021 ◽  
Vol 29 (2) ◽  
pp. 25-50
Author(s):  
C. A. Castillo-Guillén ◽  
C. Álvarez-García

Abstract Over finite local Frobenius non-chain rings of length 5 and nilpotency index 4 and when the length of the code is relatively prime to the characteristic of the residue field of the ring, the structure of the dual of γ-constacyclic codes is established and the algebraic characterization of self-dual, reversible γ-constacyclic codes and γ-constacyclic codes with complementary dual are given.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Yasunori Maekawa ◽  
Yoshihiro Ueda

In this paper, we study the dissipative structure of first-order linear symmetric hyperbolic system with general relaxation and provide the algebraic characterization for the uniform dissipativity up to order 1. Our result extends the classical Shizuta–Kawashima condition for the case of symmetric relaxation, with a full generality and optimality.


2021 ◽  
pp. 1-10
Author(s):  
Peng He ◽  
Xue-ping Wang

This paper first describes a characterization of a lattice L which can be represented as the collection of all up-sets of a poset. It then obtains a representation of a complete distributive lattice L0 which can be embedded into the lattice L such that all infima, suprema, the top and bottom elements are preserved under the embedding by defining a monotonic operator on a poset. This paper finally studies the algebraic characterization of a finite distributive.


Author(s):  
Y. Görkem Gökmen ◽  
E. Alper Yıldırım

AbstractThe problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of positive semidefinite and componentwise nonnegative matrices, one obtains the so-called doubly nonnegative relaxation, whose optimal value yields a lower bound on that of the original problem. We present a full algebraic characterization of the set of instances of standard quadratic programs that admit an exact doubly nonnegative relaxation. This characterization yields an algorithmic recipe for constructing such an instance. In addition, we explicitly identify three families of instances for which the doubly nonnegative relaxation is exact. We establish several relations between the so-called convexity graph of an instance and the tightness of the doubly nonnegative relaxation. We also provide an algebraic characterization of the set of instances for which the doubly nonnegative relaxation has a positive gap and show how to construct such an instance using this characterization.


Author(s):  
Ta-Tsien Li ◽  
Bopeng Rao

In this paper, we first give an algebraic characterization of uniqueness of continuation for a coupled system of wave equations with coupled Robin boundary conditions. Then, the approximate boundary controllability and the approximate boundary synchronization by groups for a coupled system of wave equations with coupled Robin boundary controls are developed around this fundamental characterization.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Constanza Riera ◽  
Matthew G. Parker ◽  
Pantelimon Stǎnicǎ

Sign in / Sign up

Export Citation Format

Share Document