Basic anatomical investigation of semitendinosus and the long head of biceps femoris muscle for their possible use in electrically stimulated neosphincter formation

1997 ◽  
Vol 19 (5) ◽  
pp. 287-291 ◽  
Author(s):  
M. Rab ◽  
N. Mader ◽  
L. P. Kamolz ◽  
T. Hausner ◽  
H. Gruber ◽  
...  
1997 ◽  
Vol 190 (3) ◽  
pp. 467-472 ◽  
Author(s):  
DONAL SHANAHAN ◽  
R. K. JORDAN ◽  
A. COULTHARD ◽  
P. N. COOPER ◽  
J. VARMA

2021 ◽  
Vol 8 (4) ◽  
pp. 1343
Author(s):  
Surajit Ghatak ◽  
Sonali Adole ◽  
Debajani Deka ◽  
Muhamed Faizal

Sometimes variations in biceps femoris may be noticed like an accessory head of biceps femoris. Here during routine cadaveric dissection in the department of anatomy. All India institute of medical sciences, Jodhpur we found a case with an accessory head of biceps femoris in both the lower limbs. The muscle belly is originating from the fibers of long head of biceps femoris and going downward medially to get inserted to the medial condyle of tibia on its medial superior aspect. On the right-side insertion site is like a sheath and on half a way it is merging with medial intermuscular septum of thigh. On the left side insertion is first like a thin sheath and then a thin muscle belly. The muscle belly is thin as compared to the long and short head of the main muscle bellies. On the left side thickness is around 3.7 mm in the upper end and thinner in the lower end while on right side also it is around 3.75 mm. On right side length of muscle belly is around 5 cm and on left side it is around 5.5 cm muscle belly, then becomes a sheath with length around 0.5 mm and then again becomes a muscle belly of around 3.5 cm length. Short head is arising high up on the left side while on right side it is as normal.


Sports ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 119
Author(s):  
Manon Riccetti ◽  
Jules Opplert ◽  
Joao L. Q. Durigan ◽  
Carole Cometti ◽  
Nicolas Babault

This study aimed to explore the acute effects of static stretching on the musculotendinous properties of two hamstring muscles. Twelve male volunteers underwent two testing sessions. One session was dedicated to the evaluation of the semitendinosus muscle before (PRE) and after (POST) static stretching (five sets of 30-s stretching), and the other session similarly explored the long head of biceps femoris muscle. In addition to the displacement of the myotendinous junction (MTJ), passive torque and maximal voluntary isometric torque (MVIT) were evaluated. MVIT (−8.3 ± 10.2%, p = 0.0036, d = 0.497) and passive torque (−28.4 ± 16.9%, p = 0.0003, d = 1.017) were significantly decreased POST stretching. PRE stretching, MTJ displacement was significantly greater for semitendinosus muscle than biceps femoris muscle (27.0 ± 5.2 vs. 18.6 ± 3.6, p = 0.0011, d = 1.975). After the stretching procedure, greater MTJ displacement relative changes were observed for biceps femoris muscle as compared to semitendinosus muscle (22.4 ± 31.6 vs. −8.4 ± 17.9, p = 0.0167, d = 1.252). Because of the smaller MTJ displacement PRE stretching and greater alteration POST stretching in biceps femoris muscles, the present study demonstrated muscle-specific acute responses of hamstring muscles during stretching. Although stretching acutely impairs torque production, the passive torque reduction and alteration of MTJ displacement might impact hamstring injury prevention.


2020 ◽  
Vol 55 (5) ◽  
pp. 501-514 ◽  
Author(s):  
Rémy Gérard ◽  
Léo Gojon ◽  
Philippe Decleve ◽  
Joachim Van Cant

Objective To determine the effects of an eccentric hamstrings strength-training program, performed for at least 4 weeks by healthy adults, on muscle architecture and eccentric strength. Data Sources A systematic search was performed up to October 2018 in the following electronic databases: PubMed, PEDro, CINAHL and SPORTDiscus. Combinations of the following search terms were used: eccentric strength training, eccentric loading, nordic hamstring, hamstring strength, fascicle length, pennation angle, muscle thickness, muscle architecture, biceps femoris long head, biceps femoris, and hamstring muscles. Study Selection Included articles were randomized controlled trials that allowed comparisons between isolated eccentric strength training of the biceps femoris muscle and other programs. Data Extraction Data from the included studies were extracted by 2 independent reviewers. These data included the study design, participant characteristics, inclusion and exclusion criteria of clinical studies, exercise and intervention characteristics, outcome measures, and the main results of the study. When meta-analysis was possible, we performed quantitative analysis. Ten randomized controlled trials were included. Data Synthesis Limited to moderate evidence indicated that eccentric strength training was associated with an increase in fascicle length (mean difference [MD] = 1.97; 95% confidence interval [CI] = 1.48, 2.46), an increase in muscle thickness (MD = 0.10; 95% CI = 0.06, 0.13), and a decrease in pennation angle (MD = 2.36; 95% CI = 1.61, 3.11). Conflicted to moderate evidence indicated that eccentric hamstrings strength was increased after eccentric strength training compared with concentric strength training (standardized mean difference [SMD] = 1.06; 95% CI = 0.26, 1.86), usual level of activity (SMD = 2.72; 95% CI = 1.68, 3.77), and static stretching (SMD = 0.39; 95% CI = −0.97, 1.75). Conclusions In healthy adults, an eccentric strength-training program produced architectural adaptations on the long head of the biceps femoris muscle and increased eccentric hamstrings strength.


Author(s):  
Miloslav Fabok ◽  
Bojan Leontijević ◽  
Lazar Tomić ◽  
Milivoj Dopsaj

The main aim of this study was to define the quantitative neuromuscular characteristics of Biceps Femoris muscle (BF) as the knee joint flexor, i.e. the major synergist of caudal body in all specific movement tasks of a football player, measured by tensiomyography (TMG) method . The secondary aim of the study was to compare all TMG-BF characteristics in relation to bilateral dimorphism, as well as to compare dominant and non-dominant legs. The research was conducted on a sample which included 54 professional players of age 23.0 ± 4.4 years; body height: 182.6 ± 15.1 cm; body mass: 81.2 ± 15.1 kg; BMI: 23.3 ± 1.2 kg/cm2. TMG variables were measured on the muscles during a transition training phase (mid-season and end of the season). The results have shown that the average Tc - 32.19 ± 7.64 and 33.21 ± 8.88 ms, Td - 25.56 ± 3.58 and 25.44 ± 3.20 ms, and Dm - 7.39 ± 1.87 and 7.52 ± 2.50 mm, for dominant and non-dominant leg, respectively. The results have indicated that there was no statistically significant difference between the examined TMG variables of dominant and non-dominant leg (Wilks' lambda Value = 0.979, F=0.300, p=0.952, Part. Ƞ2 = 0.021). It may be stated that there are no differences in the manifestation of neuromuscular characteristics in healthy elite football players regardless of their dominant leg. A high level of preparedness in football in addition to a completely healthy status of the body and locomotor system result in a complete neuromuscular contractile symmetry BF of both legs.


Sign in / Sign up

Export Citation Format

Share Document