Harmonic analysis and the global exponential map for compact Lie groups

1993 ◽  
Vol 27 (1) ◽  
pp. 21-27 ◽  
Author(s):  
A. H. Dooley ◽  
N. J. Wildberger
Author(s):  
Dashan Fan ◽  
Zengfu Xu

AbstractLipschitz spaces are important function spaces with relations to Hp spaces and Campanato spaces, the other two important function spaces in harmonic analysis. In this paper we give some characterizations for Lipschitz spaces on compact Lie groups, which are analogues of results in Euclidean spaces.


1983 ◽  
Vol 69 (1) ◽  
pp. 51-71
Author(s):  
Simone Gutt

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 250
Author(s):  
Frédéric Barbaresco ◽  
Jean-Pierre Gazeau

For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation. Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis. The modern development of Fourier analysis during XXth century has explored the generalization of Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups (by associating coherent states to group representations that are square integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the study of mathematics of heat. Modern research on Heat equation explores geometric extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat equation for a general volume form that not necessarily coincides with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics, for example, the Lie groups thermodynamics.


1978 ◽  
Vol 33 (3) ◽  
pp. 145-146
Author(s):  
Dao Chong Tkhi

Author(s):  
Antti J. Harju ◽  
Jouko Mickelsson

AbstractTwisted K-theory on a manifold X, with twisting in the 3rd integral cohomology, is discussed in the case when X is a product of a circle and a manifold M. The twist is assumed to be decomposable as a cup product of the basic integral one form on and an integral class in H2(M,ℤ). This case was studied some time ago by V. Mathai, R. Melrose, and I.M. Singer. Our aim is to give an explicit construction for the twisted K-theory classes using a quantum field theory model, in the same spirit as the supersymmetric Wess-Zumino-Witten model is used for constructing (equivariant) twisted K-theory classes on compact Lie groups.


Sign in / Sign up

Export Citation Format

Share Document