cup product
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Christopher Wulff

AbstractWe construct secondary cup and cap products on coarse (co-)homology theories from given cross and slant products. They are defined for coarse spaces relative to weak generalized controlled deformation retracts. On ordinary coarse cohomology, our secondary cup product agrees with a secondary product defined by Roe. For coarsifications of topological coarse (co-)homology theories, our secondary cup and cap products correspond to the primary cup and cap products on Higson dominated coronas via transgression maps. And in the case of coarse $$\mathrm {K}$$ K -theory and -homology, the secondary products correspond to canonical primary products between the $$\mathrm {K}$$ K -theories of the stable Higson corona and the Roe algebra under assembly and co-assembly.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sean Howe

Abstract We construct a $(\mathfrak {gl}_2, B(\mathbb {Q}_p))$ and Hecke-equivariant cup product pairing between overconvergent modular forms and the local cohomology at $0$ of a sheaf on $\mathbb {P}^1$ , landing in the compactly supported completed $\mathbb {C}_p$ -cohomology of the modular curve. The local cohomology group is a highest-weight Verma module, and the cup product is non-trivial on a highest-weight vector for any overconvergent modular form of infinitesimal weight not equal to $1$ . For classical weight $k\geq 2$ , the Verma has an algebraic quotient $H^1(\mathbb {P}^1, \mathcal {O}(-k))$ , and on classical forms, the pairing factors through this quotient, giving a geometric description of ‘half’ of the locally algebraic vectors in completed cohomology; the other half is described by a pairing with the roles of $H^1$ and $H^0$ reversed between the modular curve and $\mathbb {P}^1$ . Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-Sen weights of Galois representations attached to overconvergent modular forms. Our main results are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here is different, and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product, and a boundary map in group cohomology.


2020 ◽  
Vol 30 (08) ◽  
pp. 1651-1669
Author(s):  
Younggi Lee ◽  
Jeehoon Park ◽  
Junyeong Park ◽  
Jaehyun Yim

We provide an explicit algorithm to compute a lifted Massey triple product relative to a defining system for a smooth projective plane curve [Formula: see text] defined by a homogeneous polynomial [Formula: see text] over a field. The main idea is to use the description (due to Carlson and Griffiths) of the cup product for [Formula: see text] in terms of the multiplications inside the Jacobian ring of [Formula: see text] and the Cech–deRham complex of [Formula: see text]. Our algorithm gives a criterion whether a lifted Massey triple product vanishes or not in [Formula: see text] under a particular nontrivial defining system of the Massey triple product and thus can be viewed as a generalization of the vanishing criterion of the cup product in [Formula: see text] of Carlson and Griffiths. Based on our algorithm, we provide explicit numerical examples by running the computer program.


2020 ◽  
Vol 14 (4) ◽  
pp. 907-926
Author(s):  
Nathan Ilten ◽  
Charles Turo
Keyword(s):  

2019 ◽  
Vol 62 (S1) ◽  
pp. S128-S141 ◽  
Author(s):  
FATEMEH BAGHERZADEH ◽  
MURRAY BREMNER

AbstractThe cup product in the cohomology of algebras over quadratic operads has been studied in the general setting of Koszul duality for operads. We study the cup product on the cohomology of n-ary totally associative algebras with an operation of even (homological) degree. This cup product endows the cohomology with the structure of an n-ary partially associative algebra with an operation of even or odd degree depending on the parity of n. In the cases n=3 and n=4, we provide an explicit definition of this cup product and prove its basic properties.


Sign in / Sign up

Export Citation Format

Share Document