The convergence of moments in the central limit theorem for stationary ϕ-mixing processes

1983 ◽  
Vol 9 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Ryozo Yokoyama
2014 ◽  
Vol 51 (04) ◽  
pp. 1051-1064
Author(s):  
Hoang-Chuong Lam

The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on Z without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (P ω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.


1978 ◽  
Vol 25 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Peter Hall

AbstractAn early extension of Lindeberg's central limit theorem was Bernstein's (1939) discovery of necessary and sufficient conditions for the convergence of moments in the central limit theorem. Von Bahr (1965) made a study of some asymptotic expansions in the central limit theorem, and obtained rates of convergence for moments. However, his results do not in general imply that the moments converge. Some better rates have been obtained by Bhattacharya and Rao for moments between the second and third. In this paper we give improved rates of convergence for absolute moments between the third and fourth.


2014 ◽  
Vol 51 (4) ◽  
pp. 1051-1064 ◽  
Author(s):  
Hoang-Chuong Lam

The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on Z without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (Pω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.


Sign in / Sign up

Export Citation Format

Share Document