mixing processes
Recently Published Documents


TOTAL DOCUMENTS

1448
(FIVE YEARS 303)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
Vol 14 (1) ◽  
pp. 65-78
Author(s):  
Manuel Bensi ◽  
Vedrana Kovačević ◽  
Federica Donda ◽  
Philip Edward O'Brien ◽  
Linda Armbrecht ◽  
...  

Abstract. Current glacier melt rates in West Antarctica substantially exceed those around the East Antarctic margin. The exception is Wilkes Land, where for example Totten Glacier underwent significant retreat between 2000 and 2012, underlining its sensitivity to climate change. This process is strongly influenced by ocean dynamics, which in turn changes in accordance with the evolution of the ice caps. Here, we present new oceanographic data (temperature, salinity, and dissolved oxygen) collected during austral summer 2017 offshore the Sabrina Coast (East Antarctica) from the continental shelf break to ca 3000 m depth. This area is characterized by very few oceanographic in situ observations. The main water masses of the study area, identified by analysing thermohaline properties, are the Antarctic Surface Water with potential temperature θ>-1.5 ∘C and salinity S<34.2 (σθ<27.55 kg m−3), the Winter Water with -1.92<θ<-1.75 ∘C and 34.0<S<34.5 (potential density, 27.55<σθ<27.7 kg m−3), the modified Circumpolar Deep Water with θ>0 ∘C and S>34.5 (σθ>27.7 kg m−3), and Antarctic Bottom Water with -0.50<θ<0 ∘C and 34.63<S<34.67 (27.83<σθ<27.85; neutral density γn>28.30 kg m−3). The latter is a mixture of dense waters from the Ross Sea and Adélie Land continental shelves. Such waters are influenced by the mixing processes they undergo as they move westward along the Antarctic margin, also interacting with the warmer Circumpolar Deep Water. The spatial distribution of water masses offshore the Sabrina Coast also appears to be strongly linked with the complex morpho-bathymetry of the slope and rise area, supporting the hypothesis that downslope processes contribute to shaping the architecture of the distal portion of the continental margin. Oceanographic data presented here can be downloaded from https://doi.org/10.25919/yyex-t381 (CSIRO; Van Graas, 2021).


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Paolo Ventura ◽  
Flavia Dell’Agli ◽  
Marco Tailo ◽  
Marco Castellani ◽  
Ester Marini ◽  
...  

We discuss the evolution of stars through the asymptotic giant branch, focusing on the physical mechanisms potentially able to alter the surface chemical composition and on how changes in the chemistry of the external regions affect the physical properties of the star and the duration of this evolutionary phase. We focus on the differences between the evolution of low-mass stars, driven by the growth of the core mass and by the surface carbon enrichment, and that of their higher mass counterparts, which experience hot bottom burning. In the latter sources, the variation of the surface chemical composition reflects the equilibria of the proton capture nucleosynthesis experienced at the base of the convective envelope. The pollution expected from this class of stars is discussed, outlining the role of mass and metallicity on the chemical composition of the ejecta. To this aim, we considered evolutionary models of 0.7–8 M⊙ stars in a wide range of metallicities, extending from the ultra-metal-poor domain to super-solar chemistries.


2022 ◽  
Author(s):  
Wenguang Shi ◽  
Wang Quanrong

Abstract Analytical models have been widely used to aid understanding the physical and chemical processes of tracer (or chemicals) in an aquifer-aquitard system in the laboratory-controlled experiment, when the observation data is few or not available during the experiment. When injecting tracer into (or extracting them from) the aquifer-aquitard system during experiments, the pre-inlet and after-outlet reservoirs are indispensable. However, the concentration variation in the reservoirs was not treated properly in previous analytical models, resulting in poor performance in interpreting experimental data. In this study, new mathematical models describing the concentration variation in the pre-inlet and the after-outlet reservoirs are proposed, and they are integrated into the novel analytical model. The novel analytical model is developed under the mobile-immobile (MIM) framework in the aquifer-aquitard system, considering the longitudinal and vertical dispersion, the advection, and the first-order chemical reaction in both aquifer and aquitard. A finite-difference solution is developed and the experimental data are employed to test the new analytical model. Results indicate that the concentration variation in the reservoirs is important to solute transport in the aquifer-aquitard system in the laboratory-controlled experiment, and the new analytical model outperforms the previous models in interpreting experimental data. The global sensitivity analysis demonstrates that the output concentration of solute transport in the aquifer-aquitard system is most sensitive to the volume of water in the pre-inlet reservoir. The contribution of the diffusion effect to the total mass flux of tracer crossing the aquifer-aquitard interface is much smaller than the contribution of the dispersive and advective effects.


Author(s):  
Friedrich Waag ◽  
Wessam I. M. A. Fares ◽  
Yao Li ◽  
Corina Andronescu ◽  
Bilal Gökce ◽  
...  

AbstractAlloy nanoparticles offer the possibility to tune functional properties of nanoscale structures. Prominent examples of tuned properties are the local surface plasmon resonance for sensing applications and adsorption energies for applications in catalysis. Laser synthesis of colloidal nanoparticles is well suited for generating alloy nanoparticles of desired compositions. Not only bulk alloys but also compacted mixtures of single-metal micropowders can serve as ablation targets. However, it is still unknown how mixing of the individual metals transfers from the micro- to the nanoscale. This work experimentally contributes to the elucidation of the mixing processes during the laser-based synthesis of alloy nanoparticles. Key parameters, such as the initial state of mixing in the ablation target, the laser pulse duration, the laser spot size, and the ablation time, are varied. Experiments are performed on a cobalt-iron alloy, relevant for application in oxidation catalysis, in ethanol. The extent of mixing in the targets after ablation and in individual nanoparticles are studied by energy-dispersive X-ray spectroscopy and by cyclic voltammetry at relevant conditions for the oxygen evolution reaction, as model reaction. The results point at the benefits of well pre-mixed ablation targets and longer laser pulse durations for the laser-based synthesis of alloy nanoparticles. Graphical abstract


2022 ◽  
Author(s):  
Skye Elliott ◽  
Philip Lax ◽  
Sergey B. Leonov
Keyword(s):  

Photonics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Ying Wan ◽  
Md Imran Hasan ◽  
Wonkeun Chang

We numerically investigate the effect of mode-area dispersion in a tubular-type anti-resonant hollow-core fiber by using a modified generalized nonlinear Schrödinger equation that takes into account the wavelength-dependent mode area in its nonlinear term. The pulse evolution dynamics with and without the effect of mode-area dispersion are compared and analyzed. We show that strong dispersion of the mode area in the proximity of the cladding wall thickness-induced resonances has a significant impact on the soliton pulse propagation, resulting in considerable changes in the conversion efficiencies in nonlinear frequency mixing processes. The differences become more prominent when the pump has higher energy and is nearer to a resonance. Hence, the mode-area dispersion must be accounted for when modeling such a case.


Author(s):  
Toe Naing Oo ◽  
Agung Harijoko ◽  
Lucas Donny Setijadji

The Kyaukmyet prospect is located near the main ore bodies of the Kyisintaung and Sabetaung high-sulfidation Cu-Au deposits, Monywa copper-gold ore field, central Myanmar. Lithologic units in the research area are of mainly rhyolite lava, lapilli tuff and silicified sandstone, mudstone and siltstone units of Magyigon Formation which hosted to be polymetallic mineralization. Our field study recorded that epithermal quartz veins are hosted largely in rhyolite lava and lapilli tuff units. Those quartz veins show crustiform, banded (colloform), lattice bladed texture and comb quartz. The main objectives of the present research in which fluid inclusion studies were considered to conduct the nature, characteristics and hydrothermal fluids evolution from the epithermal quartz veins. In this research, there are three main types of fluid inclusions are classified according to their phase relationship (1) two-phase liquid-rich inclusions, (2) the coexisting liquid-rich and vapor-rich inclusions, and (3) only vapor-rich inclusions. Microthermometric measurements of fluid inclusions yielded homogenization temperatures (Th) of 148–282 °C and final ice-melting temperature (Tm)  of -0.2°C to -1.4°C . The value of (Tm) are equal to the salinities reaching up 0.35 to 2.07 wt % NaCl equiv. respectively. Estimation formation temperature of the quartz veins provide 190°C and 210°C and paleo-depth of formation are estimated to be between 130m and 210m. Petrography of fluid inclusion and microthermometric data suggest that fluid boiling as well as mixing processes were likely to be happened during the hydrothermal fluid evolution at the Kyaukmyet prospect. According to the characteristics of many parameters including petrography of fluid inclusion, microthermometric data, paleo-depth, evidence of quartz vein textures and types of hydrothermal alteration from the Kyaukmyet prospect allows to interpret these data to be the low-sulfidation epithermal system.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261210
Author(s):  
Travis A. Courtney ◽  
Tyler Cyronak ◽  
Alyssa J. Griffin ◽  
Andreas J. Andersson

Salinity normalization of total alkalinity (TA) and dissolved inorganic carbon (DIC) data is commonly used to account for conservative mixing processes when inferring net metabolic modification of seawater by coral reefs. Salinity (S), TA, and DIC can be accurately and precisely measured, but salinity normalization of TA (nTA) and DIC (nDIC) can generate considerable and unrecognized uncertainties in coral reef metabolic rate estimates. While salinity normalization errors apply to nTA, nDIC, and other ions of interest in coral reefs, here, we focus on nTA due to its application as a proxy for net coral reef calcification and the importance for reefs to maintain calcium carbonate production under environmental change. We used global datasets of coral reef TA, S, and modeled groundwater discharge to assess the effect of different volumetric ratios of multiple freshwater TA inputs (i.e., groundwater, river, surface runoff, and precipitation) on nTA. Coral reef freshwater endmember TA ranged from -2 up to 3032 μmol/kg in hypothetical reef locations with freshwater inputs dominated by riverine, surface runoff, or precipitation mixing with groundwater. The upper bound of freshwater TA in these scenarios can result in an uncertainty in reef TA of up to 90 μmol/kg per unit S normalization if the freshwater endmember is erroneously assumed to have 0 μmol/kg alkalinity. The uncertainty associated with S normalization can, under some circumstances, even shift the interpretation of whether reefs are net calcifying to net dissolving, or vice versa. Moreover, the choice of reference salinity for normalization implicitly makes assumptions about whether biogeochemical processes occur before or after mixing between different water masses, which can add uncertainties of ±1.4% nTA per unit S normalization. Additional considerations in identifying potential freshwater sources of TA and their relative volumetric impact on seawater are required to reduce uncertainties associated with S normalization of coral reef carbonate chemistry data in some environments. However, at a minimum, researchers should minimize the range of salinities over which the normalization is applied, precisely measure salinity, and normalize TA values to a carefully selected reference salinity that takes local factors into account.


Sign in / Sign up

Export Citation Format

Share Document