Algorithm of polynomial complexity for factoring polynomials over local fields

1994 ◽  
Vol 70 (4) ◽  
pp. 1912-1933 ◽  
Author(s):  
A. L. Chistov
2001 ◽  
Vol 32 (5) ◽  
pp. 533-547 ◽  
Author(s):  
Sebastian Pauli

Author(s):  
J. W. S. Cassels
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 465
Author(s):  
Agnieszka Prusińska ◽  
Krzysztof Szkatuła ◽  
Alexey Tret’yakov

This paper proposes a method for solving optimisation problems involving piecewise quadratic functions. The method provides a solution in a finite number of iterations, and the computational complexity of the proposed method is locally polynomial of the problem dimension, i.e., if the initial point belongs to the sufficiently small neighbourhood of the solution set. Proposed method could be applied for solving large systems of linear inequalities.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Carlos A. M. André ◽  
João Dias

Abstract We consider smooth representations of the unit group G = A × G=\mathcal{A}^{\times} of a finite-dimensional split basic algebra 𝒜 over a non-Archimedean local field. In particular, we prove a version of Gutkin’s conjecture, namely, we prove that every irreducible smooth representation of 𝐺 is compactly induced by a one-dimensional representation of the unit group of some subalgebra of 𝒜. We also discuss admissibility and unitarisability of smooth representations of 𝐺.


Sign in / Sign up

Export Citation Format

Share Document